• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pharmacological ascorbate enhances oxygen consumption and epigenetic reprogramming in pancreatic cancer

Gibson, Adrienne Rae 01 August 2018 (has links)
Pharmacological ascorbate treatment (P-AscH-, high-dose, intravenous vitamin C) results in a short-term increased flux of H2O2 that is preferentially cytotoxic to cancer cells vs. normal cells. We hypothesized that there may be a sustained effect (> 24 h) of P-AscH- that may contribute to cytotoxicity. P-AscH- significantly increased sustained oxygen consumption (OCR), DCFH-DA oxidation, and extracellular acidification (ECAR) in tumor lines with no change in non-tumorigenic cells. One possible source of this sustained ROS and OCR, the NADPH oxidase family of enzymes Dual Oxidase 1 and 2 (DUOX), which are epigenetically silenced by methylation in vitro and in vivo in PDAC, are up-regulated with P-AscH- treatment. Catalase pretreatment reversed the P-AscH--induced increases in DUOX, while DUOX inhibition partially rescues P-AscH- toxicity. Additionally, nutritional ascorbate is unable to mediate the increase in DUOX expression. Together these results suggest that P-AscH--induced toxicity may be enhanced by late metabolic and epigenetic shifts in tumor cells resulting in a feed-forward mechanism of H2O2 generation and induction of metabolic stress via enhanced DUOX expression and OCR. These data highlight a novel epigenetic mechanism of action for P-AscH-.
2

DNA damage and disruption of cellular bioenergetics contribute to the anti-cancer effects of pharmacological ascorbate

Buranasudja, Visarut 01 December 2018 (has links)
The clinical potential of pharmacological ascorbate (P-AscH-; IV delivery achieving mM concentrations in blood) as an adjuvant in cancer therapy is being re-evaluated. At mM concentrations, P-AscH- is thought to exhibit anti-cancer activity via generation of a flux of H2O2 in tumors, which leads to oxidative distress. Here, we use cell culture models of pancreatic cancer, MIA PaCa-2, PANC-1, and 339 cells, to examine the effects of P-AscH- on DNA damage, and downstream consequences, including changes in bioenergetics. We have found that the high flux of H2O2 produced by P-AscH- induces both nuclear and mitochondrial DNA damage. In response to this DNA damage, we observed that poly (ADP-ribose) polymerase-1 (PARP-1) is hyperactivated, as determined by increased formation of poly (ADP-ribose) polymer. Using our unique absolute quantitation, we found that the P-AscH--mediated the overactivation of PARP-1, which results in consumption of NAD+, and subsequently depletion of ATP (potential energy crisis) leading to mitotic cell death. Time-course studies with MIA PaCa-2 cells showed that the level of NAD+ and ATP were reduced by 80% immediately after a 1-h exposure to P-AscH- (4 mM; 14 pmol cell-1); both species returned to near basal levels within 24 h. In parallel with these metabolic and energetic restorations, the lesions in nuclear DNA were removed within 3 h; however, even after 24 h, lesions in mitochondrial DNA were only partially repaired. We have also found that the Chk1 pathway has a major role in the maintenance of genomic integrity following treatment with P-AscH-. Hence, combinations of P-AscH- and Chk1 inhibitors could have the potential to improve outcomes of cancer treatment. Hyperactivation of PARP-1 and DNA repair are ATP-consuming processes. Using a Seahorse XF96 Analyzer, we observed no changes in OCR or ECAR/PPR following treatment with P-AscH-. OCR and ECAR/PPR together indicate the rate of production of intracellular ATP; therefore, the rate of production is unchanged after challenge with P-AscH-. Thus, the severe decrease in ATP is due solely to increased demand. Genetic deletion and pharmacological inhibition of PARP-1 preserved both NAD+ and ATP; however, the toxicity of P-AscH- remained. These data indicate that loss of NAD+ and ATP are secondary factors in the toxicity of P-AscH-, and damage to DNA is the primary factor. These preclinical findings can guide the best use of P-AscH- as an adjuvant in cancer therapy.
3

The role of redox-active iron metabolism in the selective toxicity of pharmacological ascorbate in cancer therapy

Schoenfeld, Joshua David 01 May 2018 (has links)
Pharmacological ascorbate, intravenous administration of high-dose vitamin C aimed at peak plasma concentrations ~ 20 mM, has recently re-emerged, after a controversial history, as a potential anti-cancer agent in combination with standard-of-care radiation and chemotherapy-based regimens. The anti-cancer effects of ascorbate are hypothesized to involve the auto-oxidation or metal-catalyzed oxidation of ascorbate to generate H2O2, and preclinical in vitro and in vivo studies in a variety of disease sites demonstrate the efficacy of adjuvant ascorbate. Furthermore, phase I clinical trials in pancreatic and ovarian cancer have demonstrated safety and tolerability in combination with chemotherapy and preliminary results suggest therapeutic efficacy. Both preclinical in vitro and in vivo studies as well as phase I clinical trials suggest a cell-intrinsic mechanism of selective toxicity of cancer cells as compared to normal cells; however, the mechanism(s) for cancer cell-selective toxicity remain unknown. The current study aims to investigate the preclinical therapeutic efficacy of pharmacological ascorbate in combination with standard cancer therapies in three novel disease sites: non-small cell lung cancer (NSCLC), glioblastoma multiforme (GBM), and some histological subtypes of sarcoma. In vitro experiments demonstrate cancer cell-selective susceptibility to pharmacological ascorbate as compared to normal cells of identical cell lineages. Furthermore, in vivo murine xenograft models of NSCLC, GBM, and fibrosarcoma demonstrate therapeutic efficacy of pharmacological ascorbate in combination with chemotherapy and/or radiation as compared to chemotherapy and/or radiation alone without any additional therapeutic toxicity. Additionally, a phase I clinical trial in GBM subjects demonstrates the safety and tolerability of ascorbate in combination with radiation and temozolomide therapy. Although not powered for efficacy, preliminary results suggest that ascorbate may be efficacious in these subjects (median survival 18.2 months vs. 14.6 months in historical controls), and, importantly, that ascorbate therapy may be independent of MGMT promoter methylation status (median survival 23.0 months vs. 12.7 months in historical controls with absent MGMT promoter methylation). Preliminary results from a phase II clinical trial of ascorbate in combination with carboplatin/paclitaxel chemotherapy in advanced stage NSCLC subjects also demonstrate promising preliminary results related to efficacy (objective response rate (ORR) 29% and disease control rate (DCR) 93% vs. historical control ORR 15-19% and DCR 40%). In addition to demonstrating the potential efficacy of pharmacological ascorbate in combination with standard anti-cancer therapies, this work demonstrates that the selective toxicity of ascorbate may be mediated by perturbations in cancer cell oxidative metabolism. Increased mitochondrial-derived O2- and H2O2 disrupts cellular iron metabolism, resulting in increased iron uptake via Transferrin Receptor and a larger intracellular labile iron pool. The larger pool of labile iron in cancer cells underlies the selective sensitivity of cancer cells to ascorbate toxicity through pro-oxidant chemistry with ascorbate-produced H2O2. This mechanism is further supported by the finding of increased levels of O2- and labile iron in patient lobectomy-derived NSCLC tissue as compared to adjacent normal fresh frozen tissue. Together, these studies demonstrate the feasibility, selective toxicity, tolerability, and potential efficacy of pharmacological ascorbate in NSCLC, GBM, and sarcoma therapy and propose that further investigations of tumor and systemic iron metabolism are required to determine if these alterations can be exploited to enhance therapeutic efficacy or serve as therapeutic biomarkers.

Page generated in 0.0693 seconds