1 |
Pore Network Modeling Of Fissured And Vuggy CarbonatesErzeybek, Selin 01 June 2008 (has links) (PDF)
Carbonate rocks contain most of the world&rsquo / s proven hydrocarbon reserves. It is essential to predict flow properties and understand flow mechanisms in carbonates for estimating hydrocarbon recovery accurately. Pore network modeling is an effective tool in determination of flow properties and investigation of flow mechanisms. Topologically equivalent pore network models yield accurate results for flow properties. Due to their simple pore structure, sandstones are generally considered in pore scale studies and studies involving carbonates are limited. In this study, in order to understand flow mechanisms and wettability effects in heterogeneous carbonate rocks, a novel pore network model was developed for simulating two-phase flow.
The constructed model was composed of matrix, fissure and vug sub domains and the sequence of fluid displacements was simulated typical by primary drainage followed by water flooding. Main mechanisms of imbibition, snap-off, piston like advance and pore body filling, were also considered. All the physically possible fluid configurations in the pores, vugs and fissures for all wettability types were examined. For configurations with a fluid layer sandwiched between other phases, the range of capillary pressures for the existence of such a layer was also evaluated. Then, results of the proposed model were compared with data available in literature. Finally, effects of wettability and pore structure on flow properties were examined by assigning different wettability conditions and porosity features. It was concluded that the proposed pore network model successfully represented two phase flow in fissured and vuggy carbonate rocks.
|
2 |
Prediction Of Multiphase Flow Properties From Nuclear Magnetic Resonance ImagingKaraman, Turker 01 February 2009 (has links) (PDF)
In this study a hybrid Pore Network (PN) model that simulates two-phase (water-oil) drainage and imbibition mechanisms is developed. The developed model produces Nuclear Magnetic Resonance (NMR) T2 relaxation times using correlations available in the literature. The developed PN was calibrated using experimental relative permeability data obtained for Berea Sandstone, Kuzey Marmara Limestone, Yenikö / y Dolostone and Dolomitic Limestone core plugs. Pore network body and throat parameters were obtained from serial computerized tomography scans and thin section images. It was observed that pore body and throat sizes were not statistically correlated. It was also observed that the developed PN model can be used to model different displacement mechanisms.
By using the synthetic data obtained from PN model, an Artificial Neural Network (ANN) model was developed and tested. It has been observed that the developed ANN tool can be used to estimate oil &ndash / water relative permeability data very well (with less than 0.05 mean square error) given a T2 signal. It was finally concluded that the developed tools can be used to obtain multiphase flow functions directly from an NMR well log such as Combinable Magnetic Resonance (CMR).
|
3 |
Façonnage du contenu spectral d'un OPO doublement résonant par maîtrise de la phase relative, applications pour la spectroscopieHardy-Baranski, Bertrand 20 December 2011 (has links) (PDF)
Actuellement, un besoin croissant de techniques de détection et de quantification des gaz se manifeste, que ce soit pour la caractérisation de polluants atmosphériques, pour le contrôle de la qualité de l'air intérieur ou encore pour des aspects de sécurité en milieu industriel. Pour répondre à cette problématique, nous avons développé et caractérisé une source optique compacte, nanoseconde, constituée d'une architecture innovante d'oscillateur paramétrique optique doublement résonant (Dropo). La compréhension du rôle de la phase relative des ondes en interaction a été primordiale pour maîtriser le contenu spectral émis par ce type de sources paramétriques. Au cours de ce travail nous avons abouti à la maîtrise de cette phase, et réalisé une nouvelle architecture, dite nested-cavity OPO (NesCOPO). Avec cette cavité originale, un contrôle achromatique de la phase relative est réalisé pour toute la bande de gain paramétrique, permettant de démontrer le façonnage de cette dernière. Nous avons ainsi mis en évidence deux modes de fonctionnement suivant que la bande de gain présente un lobe unique ou deux lobes séparés d'environ un térahertz. Dans la dernière configuration, une émission bifréquence de l'OPO a été démontrée. Dans la première configuration, une émission monofréquence a été obtenue de manière contrôlée. Cette nouvelle architecture d'OPO - NesCOPO - a ouvert la voie à de nouveaux types d'accord en fréquence, particulièrement intéressants pour des expériences de spectroscopie. En tirant parti de l'imbrication de deux cavités optiques, nous avons ainsi été en mesure de réaliser des balayages fréquentiels automatisés sur toute la bande de gain avec une résolution ajustable. Une autre technique de balayage, promettant des balayages sur plusieurs dizaines de cm-1, a conduit à une évolution de l'architecture du NesCOPO et a été brevetée. Afin de valider son potentiel pour des applications de spectroscopie, et tirant parti du seuil d'oscillation très bas (1 µJ), nous avons pu implanter le NesCOPO, pompé par microlaser, dans des instruments compacts de mesure de gaz locale (technique photoacoustique) et à distance.
|
4 |
Use Of Pore Scale Simulators To Understand The Effects Of Wettability On Miscible Carbon Dioxide Flooding And InjectivityUzun, Ilkay 01 December 2005 (has links) (PDF)
This study concentrates on the modelling of three phase flow and miscible CO2 flooding in pore networks that captures the natural porous medium of a reservoir. That is to say, the network, that is a Matlab code, consists of different sided triangles which are located randomly through the grids. The throats that connect the pores are also created by the model. Hence, the lengths and the radii of the throats are varying. The network used in this research is assumed to be representative of mixed-wet carbonates in 2-D. Mixed wettability arises in real porous media when oil renders surfaces it comes into prolonged contact with oil-wet while water-filled nooks and crannies remain water-wet. The model developed is quasi-static approach to simulate two phase and three phase flows. By this, capillary pressures, relative permeabilities, saturations, flow paths are determined for primary drainage, secondary imbibition, and CO2 injection cases. To calculate the relative permeability, capillary entry pressures are first determined. Then, hydraulic conductances and flow rates of the network for each grid are obtained. Phase areas and saturations are also determined. It is accepted that the displacement mechanism in drainage and CO2 injection is piston-like whereas in imbibition it is either piston-like or snap-off.
The results of the model are compared with the experimental data from the literature. Although, the pore size distribution and the contact angle of the model are inconsistent with the experimental data, the agreement of the relative permeabilities is promising.
The effect of contact angle in the same network for three phase flow where immiscible CO2 is injected as a third phase at supercritical temperature (32 ° / C) is investigated. And it is found that, the increase in the intrinsic angles causes decrease in relative permeability values.
As another scenario, two phase model is developed in which miscible CO2 & / #8211 / water is flooded after the primary drainage of the same 2-D network at supercritical temperature (32 ° / C). This case is compared with the previous case and the effects of miscibility are investigated such that it causes the relative permeability values to increase.
Adsorption is another concern of which its effects are analyzed in a single pore model. The model is compared with the reported experimental data at high temperature and pressures. A reasonable fit is obtained.
|
Page generated in 0.0858 seconds