Spelling suggestions: "subject:"phaselocked"" "subject:"phaselock""
51 |
Design of 1-V CMOS RF phase-locked loops and frequency synthesizers /Leung, Chi Tak. January 2003 (has links)
Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2003. / Includes bibliographical references. Also available in electronic version. Access restricted to campus users.
|
52 |
A fractional N frequency synthesizer for an adaptive network backplane serial communication systemRangan, Giri N. K. 28 August 2008 (has links)
Not available / text
|
53 |
Low-noise and high-frequency clock generation core for VLSI CMOS integrationRobinson, Moises Emanuel 28 August 2008 (has links)
Not available / text
|
54 |
Performance study of uniform sampling digital phase-locked loopsfor [Pi]/4-differentially encoded quaternary phase-shift keying黃俊賢, Vong, Chun-yin. January 1998 (has links)
published_or_final_version / Electrical and Electronic Engineering / Master / Master of Philosophy
|
55 |
Design of frequency synthesizers for short range wireless transceiversValero Lopez, Ari Yakov 30 September 2004 (has links)
The rapid growth of the market for short-range wireless devices, with standards such as Bluetooth and Wireless LAN (IEEE 802.11) being the most important, has created a need for highly integrated transceivers that target drastic power and area reduction while providing a high level of integration. The radio section of the devices designed to establish communications using these standards is the limiting factor for the power reduction efforts. A key building block in a transceiver is the frequency synthesizer, since it operates at the highest frequency of the system and consumes a very large portion of the total power in the radio. This dissertation presents the basic theory and a design methodology of frequency synthesizers targeted for short-range wireless applications. Three different examples of synthesizers are presented. First a frequency synthesizer integrated in a Bluetooth receiver fabricated in 0.35μm CMOS technology. The receiver uses a low-IF architecture to downconvert the incoming Bluetooth signal to 2MHz. The second synthesizer is integrated within a dual-mode receiver capable of processing signals of the Bluetooth and Wireless LAN (IEEE 802.11b) standards. It is implemented in BiCMOS technology and operates the voltage controlled oscillator at twice the required frequency to generate quadrature signals through a divide-by-two circuit. A phase switching prescaler is featured in the synthesizer. A large capacitance is integrated on-chip using a capacitance multiplier circuit that provides a drastic area reduction while adding a negligible phase noise contribution. The third synthesizer is an extension of the second example. The operation range of the VCO is extended to cover a frequency band from 4.8GHz to 5.85GHz. By doing this, the synthesizer is capable of generating LO signals for Bluetooth and IEEE 802.11a, b and g standards. The quadrature output of the 5 - 6 GHz signal is generated through a first order RC - CR network with an automatic calibration loop. The loop uses a high frequency phase detector to measure the deviation from the 90° separation between the I and Q branches and implements an algorithm to minimize the phase errors between the I and Q branches and their differential counterparts.
|
56 |
Modelling and applications of MOS varactors for high-speed CMOS clock and data recoverySameni, Pedram 05 1900 (has links)
The high-speed clock and data recovery (CDR) circuit is a key building block of modern communication systems with applications spanning a wide range from wireline long-haul networks to chip-to-chip and backplane communications. In this dissertation, our focus is on the modelling, design and analysis of devices and circuits used in this versatile system in CMOS technology. Of these blocks, we have identified the voltage-controlled oscillator (VCO) as an important circuit that contributes to the total noise performance of the CDR. Among different solutions known for this circuit, LC-VCO is acknowledged to have the best phase noise performance, due to the filtering characteristic of the LC tank circuit. We provide details on modelling and characterization of a special type of varactor, the accumulation-mode MOS varactor, used in the tank circuit as a tuning component of these types of VCOs.
We propose a new sub-circuit model for this type of varactor, which can be easily migrated to other technologies as long as an accurate model exists for MOS transistors. The model is suitable whenever the numerical models have convergence problems and/or are not defined for the specific designs (e.g., minimum length structures). The model is verified directly using measurement in a standard CMOS 0.13µm process, and indirectly by comparing the tuning curves of an LC-VCO designed in CMOS 0.13µm and 0.18µm processes. Using a varactor, a circuit technique is proposed for designing a narrowband tuneable clock buffer, which can be used in a variety of applications including the CDR system. The buffer automatically adjusts its driving bandwidth to that of the VCO, using the same control voltage that controls the frequency of the VCO. In addition, a detailed analysis of the impact of large output signals on the tuning characteristics of the LC-VCO is performed. It is shown that the oscillation frequency of the VCO deviates from that of an LC tank.
|
57 |
Modelling and applications of MOS varactors for high-speed CMOS clock and data recoverySameni, Pedram 05 1900 (has links)
The high-speed clock and data recovery (CDR) circuit is a key building block of modern communication systems with applications spanning a wide range from wireline long-haul networks to chip-to-chip and backplane communications. In this dissertation, our focus is on the modelling, design and analysis of devices and circuits used in this versatile system in CMOS technology. Of these blocks, we have identified the voltage-controlled oscillator (VCO) as an important circuit that contributes to the total noise performance of the CDR. Among different solutions known for this circuit, LC-VCO is acknowledged to have the best phase noise performance, due to the filtering characteristic of the LC tank circuit. We provide details on modelling and characterization of a special type of varactor, the accumulation-mode MOS varactor, used in the tank circuit as a tuning component of these types of VCOs.
We propose a new sub-circuit model for this type of varactor, which can be easily migrated to other technologies as long as an accurate model exists for MOS transistors. The model is suitable whenever the numerical models have convergence problems and/or are not defined for the specific designs (e.g., minimum length structures). The model is verified directly using measurement in a standard CMOS 0.13µm process, and indirectly by comparing the tuning curves of an LC-VCO designed in CMOS 0.13µm and 0.18µm processes. Using a varactor, a circuit technique is proposed for designing a narrowband tuneable clock buffer, which can be used in a variety of applications including the CDR system. The buffer automatically adjusts its driving bandwidth to that of the VCO, using the same control voltage that controls the frequency of the VCO. In addition, a detailed analysis of the impact of large output signals on the tuning characteristics of the LC-VCO is performed. It is shown that the oscillation frequency of the VCO deviates from that of an LC tank.
|
58 |
Design and evaluation of a low-cost X-band synthesizer for LMDS applications /Suvakov, Srdjan. January 1900 (has links)
Thesis (M. App. Sc.)--Carleton University, 2003. / Includes bibliographical references (p. 103-105). Also available in electronic format on the Internet.
|
59 |
Phase alignment of asynchronous external clock controllable devices to periodic master control signal using the Periodic Event Synchronization UnitOstrander, Charles Nicholas. January 2009 (has links) (PDF)
Thesis (MS)--Montana State University--Bozeman, 2009. / Typescript. Chairperson, Graduate Committee: Brock LaMeres. Includes bibliographical references (leaves 64-66).
|
60 |
Frequency dividers design for multi-GHz PLL systemsBarale, Francesco January 2008 (has links)
Thesis (M. S.)--Electrical and Computer Engineering, Georgia Institute of Technology, 2008. / Committee Chair: Laskar Joy; Committee Member: Cressler John; Committee Member: Tentzeris Emmanouil
|
Page generated in 0.024 seconds