• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 125
  • 28
  • 16
  • 7
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 256
  • 256
  • 87
  • 68
  • 66
  • 60
  • 37
  • 30
  • 29
  • 29
  • 28
  • 26
  • 22
  • 22
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

A novel technique for phased array receivers based on an economic sampling scheme

Blanco Moro, Rodrigo 04 September 2013 (has links)
Phased array systems present desirable antenna features like beam steering and high gain. However, due to their high cost, civilian applications cannot generally afford them, restricting their usage to military. Hardware involved in phased array systems is expensive and the number of devices is high, since there is usually one device of each kind (filter, amplifier, shifter..) for each individual antenna. Alternative techniques, mainly based on TDMA, have been developed looking for lowering the number of elements in the system. However, these approaches increase the system bandwidth, multiplying it by a factor of $N$ (Number of antennas), as they use redundant information. In this thesis, a novel phased receiver, based on an economic sampling scheme is proposed. All the elements in an array receive a common information (signal amplitude) and a unique information (relative delay between elements). The idea is to sample only the information required to reconstruct the transmitted signal and discard the redundant one. This idea is achieved by sampling just one antenna during each RF cycle and then gathering all the information taking in account the relative delay between different antenna elements. The proposed technique is mathematically proved and validated by simulation. As a first approach, the equation for the received signal in the frequency domain is derived for a linear array. The radiation pattern and the received signals are simulated for equally spaced planar and linear arrays. Bandwidth signal transmission is demonstrated and tapering effects are shown. After that, the proposed technique is expanded for arbitrary structures and the resulting system bandwidth is enhanced by using different sampling order sequences. / Master of Science
72

Transparent Capacitive and Piezoelectric Micromachined Ultrasonic Transducers for Tactile Feedback with 3D Displays

Laughlin, Emily Anne 06 August 2021 (has links) (PDF)
3D display technology is limited by the user's ability to interact with displays without being connected to external equipment. In order to feel tactile feedback in conjunction with displays, ultrasonic sound pressure fields have been created; however, ceramic transducers interfere with the user's immersive experience. We have created transparent ultrasonic transducers using capacitive micromachined ultrasonic transducer (CMUT) and piezoelectric micromachined ultrasonic transducer (PMUT) technology that allow the user to remain immersed in the experience while interacting with the display. Individual transparent piezoelectric transducers made with indium tin oxide (ITO) and polyvinylidene fluoride (PVDF) generate 66.9dB with 91.6% transparency. Samples were phased and modulated using a field programmable gate array (FPGA) in a 36-element array.
73

Infrared Phased-array Antenna-coupled Tunnel Diodes

Slovick, Brian Alan 01 January 2011 (has links)
Infrared (IR) dipole antenna-coupled metal-oxide-metal (MOM) tunnel diodes provide a unique detection mechanism that allows for determination of the polarization and wavelength of an optical field. By integrating the MOM diode into a phased-array antenna, the angle of arrival and degree of coherence of received IR radiation can be determined. The angular response characteristics of IR dipole antennas are determined by boundary conditions imposed by the surrounding dielectric or conductive environment on the radiated fields. To explore the influence of the substrate configuration, single dipole antennas are fabricated on both planar and hemispherical lens substrates. Measurements demonstrate that the angular response can be tailored by the thickness of the electrical isolation stand-off layer on which the detector is fabricated and/or the inclusion of a ground plane. Directional detection of IR radiation is achieved with a pair of dipole antennas coupled to a MOM diode through a coplanar strip transmission line. The direction of maximum angular response is altered by varying the position of the diode along the transmission line connecting the antenna elements. By fabricating the devices on a quarter wave layer above a ground plane, narrow beam widths of 35° full width at half maximum and reception angles of ± 50° are achievable with minimal side-lobe contributions. Phased-array antennas can also be used to assess the degree of coherence of a partially coherent field. For a two-element array, the degree of coherence is a measure of the correlation of electric fields received by the antennas as a function of the element separation.
74

Characterization of Military Aircraft Jet Noise Using Wavepacket Analysis and Other Array Processing Methods

Harker, Blaine M 01 October 2017 (has links)
Sound generation and radiation properties are studied of full-scale tactical jet engine noise. This is motivated by the high sound exposure levels from jet noise, particularly for tactical engines. Acoustic source reconstruction methods are implemented computationally on existing jet noise data. A comparative study is performed using numerical simulations to understand the capabilities of more advanced beamforming methods to successfully estimate the source properties of a distributed, partially correlated source distribution. The properties and limitations of each beamforming method are described. Having validated the methods, beamforming with regularization—via the Hybrid Method—is implemented on linear array measurements near an installed tactical engine. A detailed analysis of the correlation and coherence properties associated with the phased array measurements guides the implementation of the beamforming. When the measurements are used as inputs to the beamforming, they produce partially correlated, distributed sources in a full-order model representation. A processing technique is also implemented that increases the usable bandwidth of the array measurements to almost an order of magnitude above the array design frequency. To more appropriately study the equivalent sources, a decomposition technique is designed and implemented to create a reduced-order wavepacket model of the jet noise. The wavepacket model is modular and scalable to allow for the efficient characterization of similar jet noise measurements. It is also appropriate for its physical significance, as wavepackets are attributed to the turbulent flow as well as the hydrodynamic and acoustic properties of the radiation. The reduced order model can estimate the levels and coherence properties of the acoustic radiation and represents a significant step towards a complete jet noise prediction model.
75

Characterization of Military Aircraft Jet Noise Using Wavepacket Analysis and Other Array Processing Methods

Harker, Blaine M 01 October 2017 (has links)
Sound generation and radiation properties are studied of full-scale tactical jet engine noise. This is motivated by the high sound exposure levels from jet noise, particularly for tactical engines. Acoustic source reconstruction methods are implemented computationally on existing jet noise data. A comparative study is performed using numerical simulations to understand the capabilities of more advanced beamforming methods to successfully estimate the source properties of a distributed, partially correlated source distribution. The properties and limitations of each beamforming method are described. Having validated the methods, beamforming with regularization”via the Hybrid Method”is implemented on linear array measurements near an installed tactical engine. A detailed analysis of the correlation and coherence properties associated with the phased array measurements guides the implementation of the beamforming. When the measurements are used as inputs to the beamforming, they produce partially correlated, distributed sources in a full-order model representation. A processing technique is also implemented that increases the usable bandwidth of the array measurements to almost an order of magnitude above the array design frequency. To more appropriately study the equivalent sources, a decomposition technique is designed and implemented to create a reduced-order wavepacket model of the jet noise. The wavepacket model is modular and scalable to allow for the efficient characterization of similar jet noise measurements. It is also appropriate for its physical significance, as wavepackets are attributed to the turbulent flow as well as the hydrodynamic and acoustic properties of the radiation. The reduced order model can estimate the levels and coherence properties of the acoustic radiation and represents a significant step towards a complete jet noise prediction model.
76

On The Design Of Wideband Antennas Using Mixed Order Tangential Vector Finite Elements

Karacolak, Tutku 05 August 2006 (has links)
A 3D Finite Element Boundary Integral technique (FE-BI) using mixed-order tangential vector finite elements (TVFE?s) is presented. This technique is used to design two wide band antennas and an ultra wideband (UWB) antenna array. Tetrahedral elements are used for domain discretization because they offer higher flexibility when simulating complex structures. A set of hierarchical mixed-order TVFE?s up to and including order 2.5 is implemented. Hierarchical mixed-order TVFE?s accurately simulate regions with high and low field variations. They also guarantee tangential field continuity across element boundaries and suppress spurious modes. The efficacy of the technique has been tested on two different wide band antennas and an UWB array. The first antenna is designed for automotive applications and covers GPS, GSM, XM, and PCS bands (0.8?3.35 GHz). The second antenna is a double sided rounded bowtie antenna (DSRBA) for UWB communication (3.1-10.6 GHz). The third design is a DSRBA array. For validation purposes, the antennas are also simulated using a commercially available high frequency electromagnetic simulation software, HFSS. Results regarding antenna parameters such as return loss, radiation pattern, and gain are also given.
77

A MAGNETIC PHASED ARRAY ANTENNA FOR COMMUNICATION WITH IMPLANTED BIOMEDICAL DEVICES IN SMALL ANIMALS

Lekas, Michael S. January 2009 (has links)
No description available.
78

RF MEMS SWITCHES AND PHASE SHIFTERS FOR 3D MMIC PHASED ARRAY ANTENNA SYSTEMS

WANG, YU ALBERT 11 June 2002 (has links)
No description available.
79

Realization of a Planar Low-Profile Broadband Phased Array Antenna

Kasemodel, Justin Allen 29 October 2010 (has links)
No description available.
80

A Frequency Domain Beamforming Method to Locate Moving Sound Sources

Camargo, Hugo Elias 08 June 2010 (has links)
A new technique to de-Dopplerize microphone signals from moving sources of sound is derived. Currently available time domain de-Dopplerization techniques require oversampling and interpolation of the microphone time data. In contrast, the technique presented in this dissertation performs the de-Dopplerization entirely in the frequency domain eliminating the need for oversampling and interpolation of the microphone data. As a consequence, the new de-Dopplerization technique is computationally more efficient. The new de-Dopplerization technique is then implemented into a frequency domain beamforming algorithm to locate moving sources of sound. The mathematical formulation for the implementation of the new de-Dopplerization technique is presented for sources moving along a linear trajectory and for sources moving along a circular trajectory, i.e. rotating sources. The resulting frequency domain beamforming method to locate moving sound sources is then validated using numerical simulations for various source configurations (e.g. emission angle, emission frequency, and source velocity), and different processing parameters (e.g. time window length). Numerical datasets for sources with linear motion as well as for rotating sources were simulated. For comparison purposes, selected datasets were also processed using traditional time domain beamforming. The results from the numerical simulations show that the frequency domain beamforming method is at least 10 times faster than the traditional time domain beamforming method with the same performance. Furthermore, the results show that as the number of microphones and/or grid points increase, the processing time for the traditional time domain beamforming method increases at a rate 20 times larger than the rate of increase in processing time of the new frequency domain beamforming method. / Ph. D.

Page generated in 0.0837 seconds