• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Bioproduction of L-phenylacetylcarbinol in solid-liquid two phase partitioning bioreactors

KHAN, Tanya Razia 26 August 2010 (has links)
Biphasic systems such as two-phase partitioning bioreactors (TPPBs) have been used to alleviate biological inhibition by sequestering inhibitory compounds within an immiscible phase. The use of solid polymer beads as this auxiliary phase provides a fully biocompatible alternative to commonly used yet potentially toxic organic solvents. This work focused on the application of solid-liquid TPPBs to the bioproduction of the pharmaceutical precursor L-phenylacetylcarbinol (PAC), a biotransformation which suffers from substrate (benzaldehyde), product (PAC), and by-product (benzyl alcohol) inhibition, and simple strategies to improve TPPB performance in general. A wide range of commercially available, biocompatible, and non-bioavailable polymers were screened for their affinity for benzaldehyde, PAC, and benzyl alcohol. Hytrel G3548L demonstrated the highest affinity for all three target compounds and was subsequently used in solid-liquid TPPBs for PAC production. Using 15% v/v polymer beads, PAC concentration was increased by 104% and benzyl alcohol concentration decreased by 38% over the single phase control. The delivery of benzaldehyde from polymer beads demonstrated only a 6-8% reduction in mass productivity with improved operational simplicity and reduced operator intervention. The final objective of this work was to independently investigate various aspects of the aqueous phase composition and determine how each factor affects the partition coefficient of benzaldehyde in Hytrel G3548L. Temperature and pH were observed to have no significant effect on partitioning. Salt and glucose additions increased the partition coefficient by 173% and 30% respectively compared to RO water, while ethanol was found to decrease the partition coefficient from 44 (±1.6) to 1 (±0.3). These findings may be applied to solid-liquid TPPBs to increase or decrease partitioning as required, leading to improved bioreactor performance. This work has successfully shown that with careful polymer selection, solid-liquid TPPBs can be used to increase the productivity of a biotransformation without the associated biocompatibility problems that have sometimes been observed with organic solvents. The delivery of inhibitory substrate from the polymer phase was successfully accomplished, which is a novel demonstration in the field of solid-liquid TPPBs for biocatalysis. Finally this work contributes a range of simple strategies to improve the partitioning behavior of solid-liquid TPPBs using the aqueous phase composition. / Thesis (Master, Chemical Engineering) -- Queen's University, 2010-08-26 10:53:38.569
2

Enantiokomplementäre Dehydrogenasen aus Arthrobacter sp. TS-15 zur stereoselektiven Oxidation von Ephedrinen und Reduktion aromatischer Ketoverbindungen

Shanati, Tarek 08 August 2019 (has links)
Zur stereoselektiven Herstellung von α-Hydroxyketonen aus prochiralen Ketonen stellen die Alkoholdehydrogenasen eine ökologische als auch ökonomische Alternative zu den verfügbaren industriellen Syntheserouten dar. Zurzeit stoßen sowohl die Biokatalyse als auch die organische Katalyse bei der Herstellung von sterisch anspruchsvollen α-Hydroxyketonen an ihre Grenzen. Die Synthese von enantiomerenreinem (R)-Phenylacetylcarbinol [(R)-PAC] und S- Phenylacetylcarbinol [(S)-PAC] aus dem prochiralen α-Diketon Phenylpropan-1,2-dion (PPD) stellt eine anspruchsvolle Synthese sowohl für akademische als auch für industrielle Zwecke dar. Diese chiralen Bausteine dienen als Vorgänger bei der Synthese von (‒)-Ephedrin und (+)-Pseudoephedrin. (‒)-Ephedrin und (+)-Pseudoephedrin werden jährlich in großen Mengen hergestellt, was zunehmend ein ernsthaftes ökologisches Problem darstellt. Aufgrund ihrer Toxizität als auch ihre Persistenz in der Umwelt, beispielsweise in Abwasserkläranlagen, wurden sie kürzlich als neu auftauchende Kontaminanten eingestuft. In dieser Arbeit wurde die Biodegradierung der Isomere von Ephedrin untersucht. Dabei wurde der neue Stamm Arthrobacter sp. TS-15 isoliert, welcher mit Ephedrin als einzige Kohlenstoffquelle wachsen kann. Dieser Stamm wurde bei der DSMZ unter der Nummer (DSM 32400) hinterlegt. Das Genom dieses Stammes wurde sequenziert und unter der Zugangsnummer (SDXQ00000000) in der Genbank verwahrt. Anhand verschiedener phylogenetischer Untersuchungen wurde TS-15 als eine Subspezies von Arthrobacter aurescens eingeordnet. Des Weiteren wurde der Einfluss der Isomerie von Ephedrin auf dessen Biodegradierung sowie auf die Wachstumsrate von TS-15 untersucht. Es wurde festgestellt, dass das Isomer (‒)-Pseudoephedrin am langsamsten abgebaut wird und dementsprechend einen negativen Einfluss auf das Kulturwachstum hat. Hingegen zeigte sein Enantiomer (+)-Pseudoephedrin die schnellste Biodegradierung mit einem positiven Effekt auf das Wachstum von TS-15. Anhand der Analyse der Metabolite im Kultivierungsmedium als auch aus den Zellextrakten von TS-15 wurde ein neuer katabolischer einleitender Schritt detektiert, in dem das Ephedrin zu Methcathinon VII oxidiert wird. Zur Bestimmung der oxidierenden Enzyme wurden Proteinanreicherungsverfahren eingesetzt. Mittels Peptidmassenfingerprints wurden 51 Proteinhits ermittelt. Nach einer kombinierten Analyse mittels der Proteinhits und des rationalen Genomminings wurde ein neues Gencluster zum Abbau von Ephedrin identifiziert. Zwei postulierte Dehydrogenasen wurden aus dem Genom isoliert, kloniert und in dem E. coli T7 SHuffle Stamm heterolog exprimiert. Dadurch wurden neue enantiokomplementäre Enzyme entdeckt. Die Pseudoephedrin Dehydrogenase (PseDH) ist enantiospezifisch für (+)-S,(N)-(Pseudo-)-Ephedrin, während die Ephedrin Dehydrogenase (EDH) nur die enantiospezifische Oxidation von (‒)-R,(N)-(Pseudo-)-Ephedrin katalysieren kann. Beide Dehydrogenasen sind NADH-abhängig und der Superfamilie der kurzkettigen Dehydrogenasen untergeordnet. Bei der Charakterisierung dieser Dehydrogenasen konnte gezeigt werden, dass das Substratspektrum wertvolle chirale Produkte umfasst. Beide Dehydrogenasen zeigen strikte Regio- und Enantioselektivität gegenüber dem α-Diketon Phenylpropan-1,2-Dion (PPD). Somit wurde PPD zu (S)-PAC (ee >99%) und (R)-PAC (ee >99%) mittels PseDH bzw. EDH mit vollem Umsatz reduziert. Darüber hinaus wurde die Kristallstruktur der PseDH im Rahmen einer Zusammenarbeit mit der Universität von York mit einer Auflösung von 1,8 Å aufgeklärt. Die Kristallstruktur wurde in PDB unter der Zugangsnummer (6QHE) hinterlegt. Mittels der Kristallstruktur der PseDH und des Homologiemodells der EDH wurden Strukturanalysen durchgeführt und die ersten Hypothesen zur Funktionsweise dieser Enzyme aufgestellt. Des Weiteren wurden über Peptidsequenzanalysen zu diesen Enzymen Rückschlüsse auf ihren evolutionären Ursprung gezogen. Die Stabilität der Dehydrogenasen wurde mit unterschiedlichen Lösungsmitteln bestimmt. CPME wurde als geeignetstes organisches Lösungsmittel für die Biokatalyse mit diesen Enzymen ermittelt. Beide Enzyme wurden mittels eines organisch-wässrigen Zweiphasensystems unter enzymgekoppelter Cofaktorregenerierung getestet. Dadurch wurde der Zugang zur Produktion von (S)-PAC und (R)-PAC aus PPD mittels PseDH bzw. EDH geschaffen.
3

Kinetics and modelling of enzymatic process for R-phenylacetylcarbinol (PAC) production

Leksawasdi, Noppol, Biotechnology & Biomolecular Sciences (BABS), UNSW January 2004 (has links)
R-phenylacetylcarbinol (PAC) is used as a precursor for production of ephedrine and pseudoephedrine, which are anti-asthmatics and nasal decongestants. PAC is produced from benzaldehyde and pyruvate mediated by pyruvate decarboxylase (PDC). A strain of Rhizopus javanicus was evaluated for its production of PDC. The morphology of R. javanicus was influenced by the degree of aeration/agitation. A relatively high specific PDC activity (328 U decarboxylase g-1 mycelium) was achieved when aeration/agitation were reduced significantly in the latter stages of cultivation. The stability of partially purified PDC and crude extract from R. javanicus were evaluated by examining the enzyme deactivation kinetic in various conditions. R. javanicus PDC was less stable than Candida utilis PDC currently used in our group. A kinetic model for the deactivation of partially purified PDC extracted from C. utilis by benzaldehyde (0?00 mM) in 2.5 M MOPS buffer has been developed. An initial lag period prior to deactivation was found to occur, with first order dependencies of PDC deactivation on exposure time and on benzaldehyde concentration. A mathematical model for the enzymatic biotransformation of PAC and its associated by-products has been developed using a schematic method devised by King and Altman (1956) for deriving the rate equations. The rate equations for substrates, product and by-products have been derived from the patterns for yeast PDC and combined with a deactivation model for PDC from C. utilis. Initial rate and biotransformation studies were applied to refine and validate a mathematical model for PAC production. The rate of PAC formation was directly proportional to the enzyme activity level up to 5.0 U carboligase ml-1. Michaelis-Menten kinetics were determined for the effect of pyruvate concentration on the reaction rate. The effect of benzaldehyde on the rate of PAC production followed the sigmoidal shape of the Monod-Wyman-Changeux (MWC) model. The biotransformation model, which also included a term for PDC inactivation by benzaldehyde, was used to determine the overall rate constants for the formation of PAC, acetaldehyde and acetoin. Implementation of digital pH control for PAC production in a well-stirred organic-aqueous two-phase biotransformation system with 20 mM MOPS and 2.5 M dipropylene glycol (DPG) in aqueous phase resulted in similar level of PAC production [1.01 M (151 g l-1) in an organic phase and 115 mM (17.2 g l-1) in an aqueous phase after 47 h] to the system with a more expensive 2.5 M MOPS buffer.

Page generated in 0.0456 seconds