• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulations and Electronic Structure of Disordered Silicon and Carbon Materials

Li, Yuting 11 June 2014 (has links)
No description available.
2

Vibronové stavy v cérových krystalických sloučeninách / Vibron states in cerium crystalline compounds

Doležal, Petr January 2021 (has links)
This thesis is focused on study of the vibron state in Ce intermetallics. The presence of a vibron state is a consequence of an enhanced magneto-elastic interaction, between phonons and 4f electrons of the Ce ion. The magneto-elastic interaction is usually weak and can be neglected, but here in CeAl2, CePd2Al2, CeCuAl3 and CeAuAl3 is considered to be strong enough, which leads to a bound state called the vibron state. A well determined crystal structure of these compounds is a necessary prerequisite to discuss this unique behaviour. Therefore our investigation is performed on the following levels: A crystal structure study of (Ce,La)Pd2Al2-xGax and CePt2Al2, by low temperature and high temperature X-ray powder diffraction; Investigation of bulk and transport properties of a CePt2Al2 single crystal using the specific heat, magnetisation and electrical resistivity measurements; Symmetry analysis of phonon modes and angular momentum operators in the model Hamiltonian, based on group theory; And finally the study of phonon dispersion curves in CePd2Al2 and LaPd2Al2 single crystals using inelastic X-ray scattering. All these results and preformed analyses lead to the following conclusions: The CePd2Al2 and LaPd2Al2 are incongruently melting phases. We found and described the way which has allowed us to...
3

Studies of crystalline organic molecular materials under extreme conditions

Biggs, Timothy James January 2006 (has links)
This thesis describes investigations into the properties of -phase BEDT-TTF charge transfer salts. Charge transfer salts are mainly studied as they are very useful test beds for fundamental physics due to the tuneability of their proper- ties and ground states. The effects of temperature and pressure on such systems have been studied, as these allow access to a wide range of different states and properties. Transport properties of these systems have been studied to obtain information about the Fermi surface and effective mass, and the effect of deuter- ation and also change of pressure media will be discussed. The interaction of infrared radiation with these systems has also been investigated and simultaneous pressure and temperature measurements will be presented, something not greatly studied due to the large technical challenges. The techniques and approaches for overcoming these are also discussed. Chapter 1 provides an introduction to the organic materials themselves with particular emphasis on the actual compounds studied. Chapter 2 provides the necessary theoretical background for studying organic charge transfer salts using magnetic quantum oscillations and their infrared re- ectivity. Chapter 3 covers the experimental techniques and also discusses some of the challenges encountered and their solutions to aid others working in this area. Chapter 4 describes an investigation into the transport properties of - (ET)2Cu(SCN)2 by studying Shubnikov-de Haas oscillations using both deuter- ated and normal samples and using two different pressure media, and comparing it to work done using a third. Chapter 5 presents an investigation into the pressure dependence of selected phonon modes in -(ET)2Cu(SCN)2 using infrared radiation on a deuterated sam- ple. Chapter 6 presents what is believed to be the first pressure and temperature dependent infrared study of an organic molecular material. In this case the or- ganic molecular material is d8--(ET)2Cu[N(CN)2]Br, but the techniques should be readily transferable to other materials.

Page generated in 0.0432 seconds