• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 584
  • 468
  • 154
  • 88
  • 33
  • 22
  • 16
  • 14
  • 13
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • Tagged with
  • 1696
  • 279
  • 251
  • 116
  • 111
  • 102
  • 97
  • 96
  • 94
  • 88
  • 84
  • 79
  • 73
  • 73
  • 73
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Fluoride removal from wet-process phosphoric acid reactor gases.

Craig, John Munro, January 1970 (has links)
Thesis--University of Florida, 1970. / Manuscript copy. Vita. Description based on print version record. Bibliography: leaves 191-199.
82

Glucose-6-phosphate dehydrogenase (G6PD) deficiency /

Chan, Tai-kwong. January 1983 (has links)
Thesis--M.D., University of Hong Kong, 1983.
83

Glucose-6-phosphate dehydrogenase (G6PD) deficiency

陳棣光, Chan, Tai-kwong. January 1983 (has links)
published_or_final_version / Medicine / Master / Doctor of Medicine
84

Beneficiation of Phalaborwa phosphate rock

Mostert, Josua Cornelis, 1934- January 1959 (has links)
No description available.
85

Florida land-pebble phosphorite : the mineralogy and an evaluation of electrostatic beneficiation

Caines, Gary Lee 12 1900 (has links)
No description available.
86

Mechanism of the hydrolysis of phosphate monoesters

Tatum, Monso Pitman 08 1900 (has links)
No description available.
87

A study of some esters of phosphoric acid : a ribonucleic acid model system

Cleveland, James Perry 05 1900 (has links)
No description available.
88

GROUP 13 CHELATES IN PHOSPHATE DEALKYLATION

Mitra, Amitabha 01 January 2006 (has links)
A series of mononuclear boron halides of the type LBX2 (LH = N-phenyl-3,5-di-tbutylsalicylaldimine,X = Cl (2), Br (3)) and LBX ( LH2 = N-(2-hydroxyphenyl)-3,5-di-tbutylsalicylaldimine,X = Cl (7), Br (8); LH2 = N-(2-hydroxyethyl)-3,5-di-tbutylsalicylaldimine,X = Cl (9), Br (10); LH2= N-(3-hydroxypropyl)-3,5-di-tbutylsalicylaldimine,X = Cl (11), Br (12)) were synthesized from their borate precursorsLB(OMe)2 (1) (LH = N-phenyl-3,5-di-t-butylsalicylaldimine ) and LB(OMe) (LH2 = N-(2-hydroxyphenyl)-3,5-di-t-butylsalicylaldimine (4), N-(2-hydroxyethyl)-3,5-di-tbutylsalicylaldimine(5), N-(3-hydroxypropyl)-3,5-di-t-butylsalicylaldimine (6)). Theborate precursors, 1, 4 - 6, in turn, were prepared by refluxing the corresponding ligandsLH or LH2 with excess B(OMe)3. The boron halide compounds were air- and moisturesensitiveand compound 7 on hydrolysis gave the oxo-bridged compound 13 thatcontained two seven-membered boron heterocycles. The boron halide compoundsdealkylated trimethyl phosphate in stoichiometric reactions to produce methyl halide andunidentified phosphate materials. Compounds 8 and 12 were found to be the mosteffective dealkylating agents. Compound 8 on reaction with t-butyl diphenyl phosphinateproduced a unique boron phosphinate compound LB(O)OPPh2 (14) containing a terminalphosphinate group. Compounds 1-14 were characterized by 1H, 13C, 11B, 31P NMR, IR,MS, EA and MP. Compounds 5, 6, 11, 12 and 13 were also characterized by singlecrystalX-ray diffraction.The alkane elimination reaction between Salen(tBu)H2 ligands and diethylaluminumbromide was used to prepare the four Salen aluminum bromide compounds,salen(tBu)AlBr (15) (salen = N,N'-ethylenebis(3,5-di-tert-butylsalicylideneimine)),salpen(tBu)AlBr (16) (salpen = N,N'-propylenebis(3,5-di-tert-butylsalicylideneimine)),salben(tBu)AlBr (17) (salben = N,N'-butylenebis(3,5-di-tert-butylsalicylideneimine)) andsalophen(tBu)AlBr (18) (salophen = N,N'-o-phenylenenebis(3,5-di-tertbutylsalicylideneimine)).The compounds contained five-coordinate aluminum either in adistorted square planar or a trigonal bipyramidal environment. The bromide group inthese compounds could be displaced by triphenylphosphine oxide or triphenyl phosphateto produce the six-coordinate cationic aluminum compounds [salen(tBu)Al(Ph3PO)2]Br(19), [salpen(tBu)Al(Ph3PO)2]Br (20), [salophen(tBu)Al(Ph3PO)2]Br (21) and[salophen(tBu)Al{(PhO)3PO}2]Br (22). All the compounds were characterized by 1H,13C, 27Al and 31P NMR, IR, mass spectrometry and melting point. Furthermore,compounds 15, 16, 17, 18, 20, 21 and 22 were structurally characterized by single-crystalX-ray diffraction. Compounds 15, 17 and 18 dealkylated a series of organophosphates instoichiometric reaction by breaking the ester C–O bond. Also, they promoted thedealkylation reaction between trimethyl phosphate and added boron tribromide.Stoichiometric reaction of compound 15 with trimethyl phosphate produced thealuminophosphinate compound salen(tBu)AlOP(O)Ph2 (23). Compound 16 on reactionwith tributyl phosphate produced the aluminophosphate compound[salpen(tBu)AlO]2[(BuO)2PO]2 (24). Compounds 23 and 24 were characterized by singlecrystalX-ray diffraction and spectroscopically.
89

The dissolution of mineral phosphate in soil

Kirk, G. J. D. January 1985 (has links)
The use of cheap, sparingly soluble calcium phosphate fertilizers is increasitgly widespread, particularly in the extensive agriculture systems of the tropics where very high yields are not sought, and phosphate deficiency is a major limitation to crop production. At present there is little quantitative understanding of the factors determining the rates of dissolution of calcium phosphates in soils. Existing quantitative treatments are inadequate, being either empirical or based on oversimplified theory. By developing a precise model of the dissolution process, it should be possible to short-cut the usual practice of running extensive field trials to establish the responses over a wide range of soil conditions and management practices. In this thesis a model which makes no arbitrary assumptions is developed for predicting the rates of dissolution of dicalcium phosphate dihydrate (DCPD) in soils. DCPD is the initial reaction product of the dissolution of many phosphatic fertilizers, and is an important fertilizer in its own right; the mechanisms governing its dissolution in soils are basically the same for other, more complex calcium phosphates. The simple case of a planar layer of DCPD in contact with soil is considered first to introduce the principles of the model. This is the simplest system for measuring experimentally the solute concentration profiles close to the dissolving surface, in order to test the model. The model is then extended to describe the dissolution of granules of DCPD in soil. The model comprises numerical solutions of mathematical equations describing the diffusion and reaction of calcium, phosphate and base in soil. The concentrations of calcium, phosphate and hydrogen ions in the soil solution at the mineral/soil boundary are found (a) from the ion activity product of DCPD and (b) by equating the fluxes of calcium, phosphate and base across the boundary (1 mol of DCPD gives 1 mol each of calcium, phosphate and base). In the granular system, the diminution of the granules as they dissolve, and the effect of neighbouring particles on each other are allowed for. The solute concentration profiles predicted for the planar system agreed with experimentally measured profiles; and the predicted net rates of dissolution of granules of DCPD agreed with the rates determined by a radioactive-tracer technique, in which <sup>45</sup>Ca dissolved from labelled DCPD is recovered from the soil with an extractant, saturated with respect to DCPD. Thus all important processes have been accounted for in the model. Since the theory is non-specific, the model should apply equally well to most other soils. The model has nine input parameters : the concentrations of calcium and phosphate in the native soil solution, the native soil pH, the phosphate and lime potential buffer capacities of the soil, the moisture status, the diffusion impedance factor, and the rate of application and particle size of the DCPD. A sensitivity analysis of the model showed that the rate is particularly dependent on particle size, rate of application, and the pH and concentration of calcium in the soil solution. If the granules are so stages the rate of dissolution is independent of the soil buffer terms. But for typical rates and methods of application, neighbouring granules will influence each other, and the consequent interactions between the rate determining variables are complex. The extension of the model to describe the dissolution of carbonateapatites, and hence rock phosphates, is discussed.
90

Conversion coatings on aluminium

Oki, Makanjuola January 1985 (has links)
No description available.

Page generated in 0.0691 seconds