• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 34
  • 11
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microstructural Analysis and Engineering of III-Nitride-Based Heterostructures for Optoelectronic Devices

Velazquez-Rizo, Martin 11 1900 (has links)
After the invention of the high-efficiency blue light-emitting diode (LED) at the end of the twentieth century, a new generation of light-emitting devices based on III-nitrides emerged, showcasing the capabilities of this semiconductor family. Despite the current limitations in the fabrication of III-nitrides, their optical and electronic properties still place them as some of the most promising semiconductors to continue the development of optoelectronic devices. To take full advantage of the versatility offered by these materials, the fabrication of novel III-nitride-based devices demands rigorous control of all of its stages. From the initial deposition of the materials, which involves controlling the composition and size of often complex heterostructures, up to the microfabrication processing used to create a final device, any deficiency occurring will negatively impact the performance of the device. Most of the time, these deficiencies reflect in microscopic defects, hindering their detection and identification of their origin. Without such knowledge, the deficiencies cannot be fixed, stalling the improvement of the device fabrication process and, consequently, its performance. This dissertation presents a variety of methodological approaches to characterize, from a microstructural point of view, different properties of novel III-nitride-based heterostructures and devices. The characterizations include studying the structure, interface, composition, and crystalline defects of different heterostructures and evaluating the microfabrication quality of microscopic LEDs. The results of the different characterizations contributed to developing novel LED and photocatalytic devices, for example, a single-quantum-well InGaN-based red LED with a high color purity, a monolithic phosphor-free white LED, microscopic green LEDs with a size smaller than 5×5 μm$^2$, and metal oxide/GaN-based photocatalysts with improved resilience to photocorrosion. The analyses and results presented in this dissertation strongly relied on the analytical capabilities offered by transmission electron microscopy, which proved to be a convenient and versatile tool for the characterization of many aspects related to the fabrication of III-nitride-based optoelectronic devices.
2

Materials modification strategies to improve praseodymium-doped visible-to-ultraviolet upconversion systems for environmental applications

Cates, Stephanie 27 May 2016 (has links)
UV radiation is utilized in a number of environmental technologies, most notably for the disinfection of water, air, and surfaces through the use of UVC fluorescent lamps. Recently, our group developed a luminescent material that could emit germicidal UVC simply by irradiating it with a household fluorescent lamp, thus introducing a new type of antimicrobial surface powered by low-intensity visible light. The materials were doped with praseodymium ions (Pr3+) which have the unique capability of converting visible light to higher energy UV using an optical mechanism called upconversion. While visible-to-UV upconversion materials appeared promising for environmental application—particularly because solar irradiation could be used for their activation—their practical application was thwarted by low light conversion efficiencies. Herein we discuss the pursuit of new material forms and modifications designed to improve the efficiency of Pr3+-based upconversion systems. These enabled successful enhancement of antimicrobial activity and led to a proof of concept for upconversion-sensitized TiO2 photocatalysis. Correlations between material properties and optical behavior will be presented, followed by commentary on how these strategies might be used to further advance upconversion systems toward environmental application.
3

Synthesis, characterisation, and activity of novel TiO2-based photocatalysts for organic pollutant photodestruction under UV and visible-light irradiation

Hudaya, Tedi, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2008 (has links)
Titania-based photocatalysts have been extensively studied for the oxidative photodestruction of organic pollutants in wastewaters, releasing non-toxic substances such as CO2, HCl, and water. However, commercial exploitation of this process is limited by the fact that titania is only active under UV irradiation (wavelength below about 388 nm), which is only less than 5% of solar light energy. Sol-gel synthesised catalyst specimens were characterised to determine the correlation between preparation conditions on morphology (XRD, SEM), optical (bandgap energy level) and physicochemical properties (BET surface area, pore volume, acid site density, acid site strength and type) of the photocatalysts. These spesific properties would then be linked to their photoactivity using aqueous aliphatic and aromatic model pollutants. This study has demonstrated that sol-gel synthesised doped titania photocatalysts, especially Pt/TiO2, may be used to effectively degrade non-volatile acids (DL-malic acid, dichloroacetic acid, and p-hydroxybenzoic acid) under visible light and UV irradiation with significant photoactivity suitable for the solar light application of photocatalytic wastewater treatment. A significant drop in band-gap energy was found for all titania sol-gel catalysts doped with Pt, Co, and Ce with values between 1.41 to 1.78 eV. The BET areas of the photocatalysts were also higher (65-117 m2/g) than that of Degussa P25 (50 m2/g). The visible-light photomineralisation of the three pollutants with Pt-TiO2 specimen were further extended to evaluate the effects of major variables in a bubble-column photoreactor on the photodegradation activities. Those major variables were lamp intensity, oxygen concentration, initial pH, catalyst dosage, and inital pollutant concentration. All the three pollutants seemed to follow the Langmuir-Hinselwood model with dual adsorption sites which implicated a bimolecular surface rate-limiting step probably between the adsorbed organic substrate and a surface hydroxyl (or peroxy) radical. A study of the CeyCoxTi(1-x)O3+d perovskite was conducted to investigate the influence of metal composition and pH on the intrinsic optophysical attributes as well as p-hydroxybenzoic acid degradation under UV irradiation. The perovskite UV photoactivities were lower than that of pure TiO2 likely due to excessive loading (metal content) creating new oxide phases act as electron-hole recombination center, regardless better physicochemical attributes of some of the perovskite samples. The role of aging time and calcination temperature on the sol-gel synthesised TiO2 was also explored. Higher calcination temperature (from 250 to 700 0C) resulted in TiO2 photocatalysts with better crystallinity, which is important for OH group formation as active sites for photodegradation. Despite of some advantages from higher temperature preparation, some detrimental effects such as decreased acidity attributes, surface area, and pore volume were also observed. The significant red-shift of sol-gel synthesized TiO2 into visible light, especially for 250 0C specimen since 600 or 700 0C had extremely low activities, has promising implications that this specimen might be used for solar application to substitute Pt-doped TiO2 in order to produce a more cost effective photocatalyst. Aging period (1 to 14 days) did not have any discernible effect on the band-gap value and acid-site density. Even so, the highest acid site strength was obtained with an aging time of 10 days. From the overall perspective, aging time longer than 3 days did not bring noticeable benefits to both catalyst attributes and photoactivities.
4

Application of Sputtering Technology on Preparing Visible-light Nano-sized Photocatalysts for the Decomposition of Acetone

Wu, Yi-chen 05 September 2007 (has links)
This study investigated the decomposition efficiency of acetone using unmodified (pure TiO2) and modified TiO2 (TiO2/ITO¡BTiO2/N) prepared by sputtering technology. The influence of operating parameters including wavelength and relative humidity on the decomposition efficiency of acetone was further discussed. Operating parameters investigated included light wavelength (350~400, 435~500, and 506~600 nm), photocatalysts (TiO2/ITO, TiO2/N, and TiO2), and relative humidity (RH) (0%, 50%, and 100%). In the experiments, acetone was degraded by photocatalysts in a self-designed batch photocatalytical reactor. Samples coated with TiO2 were placed in the batch reactor. The incident light with different wavelength was irradiated by a 20-watt lamp. Moreover, a low-pressure mercury lamp for UV light or LED lamps for blue and green lights were placed on the top of reactor. Acetone was injected into reactor by using a gasket syringe. Reactants and products were analyzed quantitatively by a gas chromatography with a flame ionization detector followed by a methaneizer (GC/FID-Methaneizer). The structure of the photocatalyst film surface showed taper and the width of column ranged from 100 to 200 nm. The film structure showed crystallization cylindrical surface and the thickness of the photocatalyst film was in the range of 4.0-4.3 £gm. The highest decomposition efficiency of acetone was observed by using TiO2/ITO under visible-light with 50% RH. The synthesis of TiO2 was mainly anatase for the tested photocatalysts. AFM images showed that the photocatalyst surface appeared rugged and the shape showed a mountain ridge distribution . Keywords: sputtering technology, modified photocatalysts, photosensitive, acetone, photocatalytic oxidation, acetone decomposition
5

Synthesis, characterisation, and activity of novel TiO2-based photocatalysts for organic pollutant photodestruction under UV and visible-light irradiation

Hudaya, Tedi, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2008 (has links)
Titania-based photocatalysts have been extensively studied for the oxidative photodestruction of organic pollutants in wastewaters, releasing non-toxic substances such as CO2, HCl, and water. However, commercial exploitation of this process is limited by the fact that titania is only active under UV irradiation (wavelength below about 388 nm), which is only less than 5% of solar light energy. Sol-gel synthesised catalyst specimens were characterised to determine the correlation between preparation conditions on morphology (XRD, SEM), optical (bandgap energy level) and physicochemical properties (BET surface area, pore volume, acid site density, acid site strength and type) of the photocatalysts. These spesific properties would then be linked to their photoactivity using aqueous aliphatic and aromatic model pollutants. This study has demonstrated that sol-gel synthesised doped titania photocatalysts, especially Pt/TiO2, may be used to effectively degrade non-volatile acids (DL-malic acid, dichloroacetic acid, and p-hydroxybenzoic acid) under visible light and UV irradiation with significant photoactivity suitable for the solar light application of photocatalytic wastewater treatment. A significant drop in band-gap energy was found for all titania sol-gel catalysts doped with Pt, Co, and Ce with values between 1.41 to 1.78 eV. The BET areas of the photocatalysts were also higher (65-117 m2/g) than that of Degussa P25 (50 m2/g). The visible-light photomineralisation of the three pollutants with Pt-TiO2 specimen were further extended to evaluate the effects of major variables in a bubble-column photoreactor on the photodegradation activities. Those major variables were lamp intensity, oxygen concentration, initial pH, catalyst dosage, and inital pollutant concentration. All the three pollutants seemed to follow the Langmuir-Hinselwood model with dual adsorption sites which implicated a bimolecular surface rate-limiting step probably between the adsorbed organic substrate and a surface hydroxyl (or peroxy) radical. A study of the CeyCoxTi(1-x)O3+d perovskite was conducted to investigate the influence of metal composition and pH on the intrinsic optophysical attributes as well as p-hydroxybenzoic acid degradation under UV irradiation. The perovskite UV photoactivities were lower than that of pure TiO2 likely due to excessive loading (metal content) creating new oxide phases act as electron-hole recombination center, regardless better physicochemical attributes of some of the perovskite samples. The role of aging time and calcination temperature on the sol-gel synthesised TiO2 was also explored. Higher calcination temperature (from 250 to 700 0C) resulted in TiO2 photocatalysts with better crystallinity, which is important for OH group formation as active sites for photodegradation. Despite of some advantages from higher temperature preparation, some detrimental effects such as decreased acidity attributes, surface area, and pore volume were also observed. The significant red-shift of sol-gel synthesized TiO2 into visible light, especially for 250 0C specimen since 600 or 700 0C had extremely low activities, has promising implications that this specimen might be used for solar application to substitute Pt-doped TiO2 in order to produce a more cost effective photocatalyst. Aging period (1 to 14 days) did not have any discernible effect on the band-gap value and acid-site density. Even so, the highest acid site strength was obtained with an aging time of 10 days. From the overall perspective, aging time longer than 3 days did not bring noticeable benefits to both catalyst attributes and photoactivities.
6

Atomic Level Study of Structural Changes of TiO2 Based Photocatalysts During Solar Water Splitting Reactions Using TEM

January 2015 (has links)
abstract: Photocatalytic water splitting is a promising technique to produce H2 fuels from water using sustainable solar energy. To better design photocatalysts, the understanding of charge transfer at surfaces/interfaces and the corresponding structure change during the reaction is very important. Local structural and chemical information on nanoparticle surfaces or interfaces can be achieved through characterizations on transmission electron microscopy (TEM). Emphasis should be put on materials structure changes during the reactions in their “working conditions”. Environmental TEM with in situ light illumination system allows the photocatalysts to be studied under light irradiation when exposed to H2O vapor. A set of ex situ and in situ TEM characterizations are carried out on typical types of TiO2 based photocatalysts. The observed structure changes during the reaction are correlated with the H2 production rate for structure-property relationships. A surface disordering was observed in situ when well-defined anatase TiO2 rhombohedral nanoparticles were exposed to 1 Torr H2O vapor and 10suns light inside the environmental TEM. The disordering is believed to be related to high density of hydroxyl groups formed on surface oxygen vacancies during water splitting reactions. Pt co-catalyst on TiO2 is able to split pure water producing H2 and O2. The H2 production rate drops during the reaction. Particle size growth during reaction was discovered with Z-contrast images. The particle size growth is believed to be a photo-electro-chemical Ostwald ripening. Characterizations were also carried out on a more complicated photocatalyst system: Ni/NiO core/shell co-catalyst on TiO2. A decrease of the H2 production rate resulting from photo-corrosion was observed. The Ni is believed to be oxidized to Ni2+ by OH• radicals which are intermediate products of H2O oxidation. The mechanism that the OH• radicals leak into the cores through cracks on NiO shells is more supported by experiments. Overall this research has done a comprehensive ex situ and in situ TEM characterizations following some typical TiO2 based photocatalysts during reactions. This research has shown the technique availability to study photocatalyst inside TEM in photocatalytic conditions. It also demonstrates the importance to follow structure changes of materials during reactions in understanding deactivation mechanisms. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2015
7

Preparation and Optimization of Novel Visible-Light-Active Photocatalysts for Waste-Water Treatment

Ran, Rong January 2016 (has links)
Photocatalysis is a series of advanced light-induced redox reaction processes resulting in the degradation and mineralization of organic pollutants in the presence of oxygen and water. Due to their capability to destroy contaminants under mild conditions, photocatalytic processes have attracted considerable attention in the field of waste-water treatment. However, photocatalytic reactions using the traditional TiO2 photocatalyst suffer from low energy efficiencies under solar irradiation. This low efficiency in the utilization of solar energy lies in its incapability in absorbing visible lights and also the high recombination rate of photo-excited species in photocatalysts. In addition, difficulties in the separation of fluids from micro- or nano-scale catalysts in large scale systems substantially impact cost efficiency in practice. In this thesis, strategies are explored which address these issues in order to improve the feasibility of solar photocatalysis. Two branches of photocatalytic transition metal-oxide semiconductor materials are investigated, namely bismuth-based and silver-based multi-phase heterogeneous photocatalysts. This research is focused on the design of visible-light-active metal-oxide photocatalysts to increase the absorption of visible light and to decrease the rates of electron-hole recombination, resulting in a high photocatalytic efficiency in regards to the degradation of organic pollutants. BiVO4 powder, synthesized from freshly made potassium metavanadate was prepared via hydrothermal treatment, characterized and experimentally investigated for the degradation of rhodamine B under visible light irradiation. The crystal structures and the specific surface areas of the composites, based on BiVO4 single phase crystal structures, are discussed. A multi-phase silver species (Ag2O/Ag3VO4/Ag4V2O7) photocatalyst was synthesized by adjusting the molar ratio of silver to vanadium (Ag to V) via hydrothermal method. The stabilities of as-prepared silver species composites regarding crystal structural changes due to photocatalytic reactions are investigated. Multi-phase silver species composites assisted with graphene oxide (GO-Ag2O/Ag3VO4/AgVO3) were synthesized at room temperature, and exhibited high visible-light photocatalytic activities regarding the degradation of model organic pollutants. The effect of graphene oxide addition on the photoactivity and on the photocorrosion of silver species composites under VLI is explored. The synergistic roles of each individual phase incorporated into the multi-phase composites are discussed regarding the photocatalytic performance.
8

Band Gap Engineering in Photocatalysts by Anion Substitution: from Ba3Ta5O15 to Ba3Ta5O14N

Anke, B., Bredow, T., Soldat, J., Wark, M., Lerch, M. 11 December 2018 (has links)
No description available.
9

TiO₂-supported dealuminated clinoptilolite: synthesis characterisation and kinetic studies for enhanced photo catalytic degradation of volatile organic compounds

Sanni, Saheed Olalekan 06 1900 (has links)
M. Tech. (Chemistry, Faculty of Applied and Computer Sciences), Vaal University of Technology. / Advanced oxidation processes (AOPs) are supposedly effective means for removal of low concentration of organic pollutants from waste water as compared to conventional treatment methods. However, TiO2 metal semiconductor is the most promising photocatalyst for degradation of organic pollutant under heterogeneous photocatalysis as compared to other metal semiconductors. Challenges such as aggregation in solution, low adsorptive ability for non-polar organic contaminants and recycling are limitations in application of TiO2 for commercial purposes. The other limitations of TiO2, is it only utilizes 4-6% of the solar energy reaching the earth's surface which is in the UV region and also rapid electron-hole recombination due its wide band gap. In this work, the limitations are overcome by synthesis of a new photocatalyst material and further applied on degradation of model organic contaminants. The first part of this work focused on preparation and characterization of photocatalyst material. The photocatalyst synthesized were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA) and UV-VIS diffuse reflectance spectrophotometer (DRUV-VIS). Supporting characterization techniques revealed partly dispersion of TiO2 within the cavities of dealuminated Clinoptilolite (HCP). TiO2 exist as nanoparticles or clusters on the HCP surface ascribed to lower loading of TiO2. XRD analysis showed that the support material employed was mainly Clinoptilolite and absorption band of prepared photocatalyst was red-shifted into the visible region, with slight reduction in band gap of photocatalyst. The second part focused on adsorption and photocatalytic degradation of methyl orange solution (MO) conducted under UV-irradiation in the presence of TiO2/HCP. The influence of operational parameters on degradation efficiency of photocatalyst material on MO was carried out in this study. Parameters such as initial dye concentration, pH, calcination temperature, inorganic anions and peroxide concentration were varied during degradation activities of MO. Comparative degradation efficiency of TiO2/HCP, TiO2 and HCP were conducted on dye mixture (Methyl orange and Methylene Blue) under UV irradiation. Kinetic analysis employing Langmuir-Hinshelwood model on dependencies of organic contaminants degradation was also conducted at different operational parameters. The adsorption capacity of MO was highest in the presence of TiO2/HCP at lower loading, which is ascribed to good dispersion of TiO2 on HCP and increased surface area of dealuminated Clinoptilolite. The photocatalytic degradation of methyl orange in the presence of TiO2/HCP was optimized at low dye concentration (30 ppm), acidic condition (pH 4), and calcination temperature of 873 K. Nitrate ion of Sodium salt accelerates degradation activities on methyl orange as compared to other inorganic anions. Photocatalytic degradation of methyl orange was greatly enhanced upon addition of oxidant (H2O2) and the photocatalyst possessed good repeatability after 3 cycles. TiO2/HCP exhibit highest degradation activities, followed by HCP as compared to TiO2 during the degradation of dye mixture. The degradation of MO by the photocatalyst fits into pseudo-first order kinetic model, while for comparative analysis of photocatalyst on dye mixtures follows second order kinetic model.
10

Preparação e caracterização de sistemas híbridos CdS/TiO2/SiO2 para aplicações fotoquímicas / Synthesis and characterization of CdS/TiO2/SiO2 hybrid systems for photochemical applications

Frederice, Rafael 28 May 2014 (has links)
No presente trabalho, três tipos de fotocatalisadores híbridos nanométricos, CdS, CdS/TiO2, e CdS/TiO2/SiO2, foram preparados e utilizados em três aplicações fotoquímicas: fotodegradação macro e microscópica de um corante, fotólise da água para geração de H2 com acompanhamento via espectrometria de massas in situ e estudo de uma reação redox via microscopia de fluorescência de campo largo. As análises por microscopia eletrônica de varredura (MEV) e de transmissão (MET) apresentaram esferas de sílica com diâmetro em torno de 300 nm e nanopartículas de CdS e TiO2 com diâmetro da ordem de 5 nm e com alta aglomeração. O recobrimento da sílica com TiO2 e CdS não foi uniforme, resultando em \"ilhas\" preferencialmente isoladas. Apesar da morfologia heterogênea, os fotocatalisadores foram eficientes na degradação da safranina O, apresentando cinética de 1ª ordem em relação à concentração do corante. No que se refere à fotólise da água, o sistema ternário (CdS/TiO2/SiO2) apresentou a maior taxa de produção de H2 (0,79 mmol h-1 g-1), o que indica maior eficiência na transferência ou injeção de carga entre CdS e TiO2, devido ao melhor contato entre os dois semicondutores na superfície das nanopartículas (NPs) de sílica. Esse sistema também foi o mais eficiente na fotorredução do corante não fluorescente resazurina no corante fluorescente resorufina, acompanhada através de medidas de intermitência de fluorescência utilizando microscopia de fluorescência de campo largo. Em geral, os sistemas após adição do corante apresentaram intermitência de fluorescência mais lenta, com maiores tempos de relaxação de off. A fotorredução do corante estabeleceu um método interessante para o mapeamento das regiões de injeção de carga CdS/TiO2, inicialmente escuras e a seguir com alta intensidade de emissão. / In the present work, three types of nanosized hybrid photocatalysts, CdS, CdS/TiO2 and CdS/TiO2/SiO2, were synthesized and used in three photochemical applications: macro and microscopic photodegradation of a dye, photolysis of water to generate H2 monitored by in situ mass spectrometry and study of a redox reaction by wide-field fluorescence microscopy. Scanning (SEM) and transmission (TEM) electronic microscopies showed quasi-monodispersed silica spheres with a diameter of about 300 nm and CdS and TiO2 nanoparticles with a diameter of approximately 5 nm highly agglomerated. The coating of the silica with CdS and TiO2 was not uniform, resulting in \"islands\" preferentially isolated. Despite the heterogeneous morphology of the photocatalysts, they were efficient in the degradation of a safranine O solution, showing kinetics of first order with respect to dye concentration. With regard to water photolysis, the ternary system (CdS/TiO2/SiO2) showed the highest rate of H2 production (0.79 mmol g-1 h-1) , which indicates more efficient charge transfer or injection between CdS and TiO2 due to better contact between the two semiconductors on the surface of the silica nanoparticles (NPs). This system also was the most efficient photocatalyst in the photorreduction of the nonfluorescent dye resazurin into the fluorescent dye resorufin, monitored by fluorescence intermittency measurements using wide-field microscopy. In general, the systems after adding the dye presented slower fluorescence intermittency, with higher times of off relaxation. The photoreduction of the dye provided an interesting method for mapping the regions of CdS/TiO2 charge injection, initially dark and then with high emission intensity.

Page generated in 0.0718 seconds