• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 295
  • 17
  • 17
  • 14
  • 8
  • 7
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 447
  • 394
  • 223
  • 215
  • 83
  • 79
  • 78
  • 75
  • 73
  • 71
  • 62
  • 59
  • 58
  • 53
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Characterization of Nb hydrides synthesized in high-pressure supercritical water by micro-beam hard X-ray photoelectron spectroscopy

Ikenaga, Eiji, Hasegawa, Masashi, Kusaba, Keiji, Niwa, Ken, Shiraki, Tatsuhito, Kato, Masahiko, Kondo, Hiroki, Soda, Kazuo 02 1900 (has links)
No description available.
132

The Electronic Structure of Organic Molecular Materials : Theoretical and Spectroscopic Investigations

Brumboiu, Iulia Emilia January 2014 (has links)
In the present thesis the electronic properties of two organic molecules were studied by means of density functional theory (DFT) in connection to their possible applications in organic photovoltaics and molecular spintronics respectively. The first analysed system is the C60 derivative PCBM extensively used in polymer solar cells for the charge separation process. Since fullerenes have been shown to undergo modifications as a result of light exposure, investigating their electronic structure is the first step in elucidating the photodegradation process. The electronic excitations from core levels to unoccupied molecular orbitals reveal not only the empty level structure of the molecule, but provide additional information related to the chemical bonds involving a specific atom type. In this way, they represent a means of determining the chemical changes that the molecule might withstand. The electronic transitions from carbon 1s core levels to unoccupied states are explained for the unmodified PCBM by a joint theoretical (DFT) and experimental study using the near edge x-ray absorption fine structure (NEXAFS) spectroscopy. The second investigated system is the transition metal phthalocyanine with a manganese atom as the metal center. Manganese phthalocyanine (MnPc) is a single molecular magnet in which the spin switch process can be triggered by various methods. It has been shown, for instance, that the adsorption of hydrogen to the Mn center changes the spin state of the molecule from 3/2 to 1. More interestingly, the process is reversible and can be controlled, opening up the possibility of using MnPc as a quantum bit in magnetic memory devices. Up to this date, the d orbital occupation in MnPc has been under a long debate, both theoretical and experimental studies revealing different configurations. In this thesis the electronic structure of the phthalocyanine is thoroughly analysed by means of DFT and the calculated results are compared to photoelectron spectroscopy measurements. The combination of theoretical and experimental tools reveals that in gas phase at high temepratures the molecule exhibits a mixed electronic configuration. In this light, the possible control of the specific electronic state of the central metal represents an interesting prospect for molecular spintronics.
133

Structure and Electronic Properties of Phthalocyanine Films on Metal and Semiconductor Substrates

Bidermane, Ieva January 2014 (has links)
The current thesis presents fundamental studies of phthalocyanines (Pcs), a group of organic macro-cycle molecules. The use of phthalocyanine molecular films in devices with a variety of possible technological applications has been the reason of the many studies dedicated to such molecules during the last decades. Core and valence photoelectron spectroscopies (PES), X-ray absorption spectroscopy (XAS) and scanning tunneling microscopy (STM) techniques are used to study phthalocyanine molecules in gas phase and adsorbed on gold (111) and silicon Si(100)-2x1 substrates. Density functional theory (DFT) is used to obtain further insights in the electronic structure of the phthalocyanines. The aim of our studies is to get a deeper understanding into the molecule-molecule and molecule-substrate interactions, a fundamental requirement for improving the devices based on such molecular materials. Gas phase PES and XAS studies and single molecule DFT calculations are performed on the valence band (VB) of iron phthalocyanine (FePc), manganese phthalocyanine (MnPc) and metal-free phthalocyanine (H2Pc). The VB simulations have shown how the metal atom of the Pc influences the inner valence states of the molecules. The HOMO of the H2Pc and FePc is formed by mostly C2p states, whereas the HOMO of MnPc has mainly Mn3d character. PES studies of H2Pc on Au(111) have revealed the influence of the surface on the adsorption of the monolayer. XAS studies indicate formation of ordered monolayer with the Pc ligands parallel to the surface and the change of the molecular tilt angle with increasing thicknesses. For LuPc2 adsorbed on Au(111), STM study demonstrates a formation of bilayer instead of a monolayer. A comparison between the results of LuPc2 adsorbed on pristine or passivated Si(100)-2x1 confirmes the different reactivities of these surfaces: LuPc2 retains many molecular-like characters, when adsorbed on the innert passivated Si. Instead, on the more reactive pristine Si surface, the spectroscopic results have indicated a more significant interaction, possible hybridization and charge redistribution between the molecules and the surface. Moreover, STM images show a modification of the geometrical shape of the molecules, which are proposed to adsorb in two different geometries on the pristine Si surface.
134

Interfaces in Dye-Sensitized Solar Cells Studied with Photoelectron Spectroscopy at Elevated Pressures

Kaufmann Eriksson, Susanna January 2014 (has links)
With an increasing demand for renewable energy sources, research efforts on different solar cell technologies are increasing rapidly. The dye-sensitized solar cell (DSC) is one such technology, taking advantage of light absorption in dye molecules. The liquid based DSC contains several interesting and important interfaces, crucial for the understanding and development of the solar cell performance. Examples of such interfaces include dye-semiconductor, electrode-electrolyte and solute-solvent interfaces. Ultimately, complete interfaces with all these components included are of particular interest. One major challenge is to understand the key functions of these systems at an atomic level and one way to achieve this is to use an element specific and surface sensitive tool, such as photoelectron spectroscopy (PES). This thesis describes the use and development of PES for studying interfaces in the DSC. The materials part of the thesis focuses on interfaces in DSCs studied with PES and the methodology development parts focus on methods to use PES for investigations of solvated heterogeneous interfaces of interest for photoelectrochemical systems such as the DSC. More specifically, beginning with standard vacuum techniques, dye molecules bound to a semiconductor surface have been studied in terms of energy level alignment, surface coverage and binding configuration. To increase the understanding of solvation phenomena present in the liquid DSC, liquid jet experiments have been performed in close combination with theoretical quantum calculations. As a step towards an in-situ method to measure a complete, functioning (in operando) solar cell, methodology development and measurements performed with higher sample pressures are described using new high pressure X-ray photoelectron spectroscopy techniques (HPXPS).
135

Synthesis and Characterisation of Ultra Thin Film Oxides for Energy Applications

Fondell, Mattis January 2014 (has links)
This thesis describes studies of materials which can be exploited for hydrogen production from water and sunlight. The materials investigated are maghemite (γ-Fe2O3), magnetite (Fe3O4) and especially hematite (α-Fe2O3), which is an iron oxide with most promising properties in this field. Hematite has been deposited using Atomic Layer Deposition (ALD) - a thin-film technique facilitating layer-by-layer growth with excellent thickness control and step coverage. The iron oxides were deposited using bis-cyclopentadienyl iron (Fe(Cp)2) or iron pentacarbonyl (Fe(CO)5) in combination with an O2 precursor. Since it is crucial to have good control of the deposition process, the influence of substrate, process temperature, precursor and carrier gas have been investigated systematically. By careful control of these deposition parameters, three polymorphs of iron oxide could be deposited: hematite (α-Fe2O3), maghemite (γ-Fe2O3) and magnetite (Fe3O4). The deposited materials were characterized using X-ray Diffraction, Raman and UV-VIS Spectroscopy, and Scanning Electron Microscopy. Hard X-ray Photoelectron Spectroscopy (HAXPES) was also used, since it is a non-destructive, chemically specific, surface sensitive technique – the surface sensitivity resulting from the short mean escape depth of the photoelectrons. The depth probed can be controlled by varying the excitation energy; higher photoelectron energies increasing the inelastic mean-free-path in the material. HAXPES studies of atomic diffusion from F-doped SnO2 substrates showed increased doping levels of Sn, Si and F in the deposited films. Diffusion from the substrate was detected at annealing temperatures between 550 °C and 800 °C. Films annealed in air exhibited improved photocatalytic behavior; a photocurrent of 0.23 mA/cm2 was observed for those films, while the as-deposited hematite films showed no photo-activity whatsoever. The optical properties of low-dimensional hematite were studied in a series of ultra-thin films (thicknesses in the 2-70 nm range). The absorption maxima were shifted to higher energies for films thinner than 20 nm, revealing a different electronic structure in thin films.
136

Ionic coupling to plasma polymer surfaces

Mutton, Simon James January 2000 (has links)
The work in this thesis was aimed at the preparation of low energy surfaces via the surface attachment of fluorinated surfactant molecules. Such surface functionalisation routes are highly dependent on the chemical nature of the substrate surface. For this reason the choice of substrate materials is both all important and extremely limited. To make the process of more general appeal a method for pre-treating the substrate, using cold plasma polymerisation reactions, followed by surfactant coupling to the plasma polymer has been devised. Using this approach, the surfactant coupling process is now dependent on the surface chemistry of deposited plasma polymers and independent of substrate characteristics. In order to form highly functionalised surfaces, likely to undergo further reactions, the plasma polymerisation of acrylic acid, ally! amine and allyl alcohol was investigated. Highly functionalised acid, amine and alcohol surfaces, as shown by X-ray Photoelectron Spectroscopy (XPS) and Infrared Spectroscopy (IR), were produced by optimisation of pulsed plasma conditions. Measurement of deposition rates during plasma polymerisation reactions indicated that polymerisation can occur during the off-time of the pulsed plasma period, most likely via free radical polymerisation pathways. Highly functionalised plasma polymer surfaces thus formed were shown to couple to fluorinated surfactant molecules. The mechanism of surfactant attachment has been suggested to be ionic attraction between opposite charges on the surfactant molecule and the plasma polymer in aqueous solution. The surfaces formed give rise to oleophobic/hydrophilic behaviour. This is in marked contrast to the usual liquid repellent attributes of conventional polyelectrolyte- fluorosurfactant complexes formed by solution phase synthesis.
137

Generation, Characterization and Application of the 3rd and 4th Harmonics of a Ti:sapphire Femtosecond Laser

Wright, Peter 25 January 2012 (has links)
Femtosecond time-resolved photoelectron spectroscopy (fsTRPES) experiments have been used to study the photoelectron energy spectra of simple molecules since the 1980’s. Analysis of these spectra provides information about the ultrafast internal conversion dynamics of the parent ions. However, ultraviolet pulses must be used for these pump-probe experiments in order to ionize the molecules. Since current solid state lasers, such as the Ti:sapphire laser, typically produce pulses centered at 800nm, it is necessary to generate UV pulses with nonlinear frequency mixing techniques. I therefore constructed an optical setup to generate the 3rd and 4th harmonics, at 266.7nm and 200nm, respectively, of a Ti:sapphire (Ti:sa) chirped-pulse amplified (CPA) laser system that produces 35fs pulses centered at 800nm. Thin Beta-Barium Borate (β-BaB2O4 or BBO) crystals were chosen to achieve a compromise between short pulse durations and reasonable conversion efficiencies, since ultrashort pulses are quite susceptible to broadening from group velocity dispersion (GVD). Output energies of around 11μJ and 230nJ were measured for the 266.7nm and 200nm pulses, respectively. The transform limits of the 3rd and 4th harmonic pulse lengths were calculated from their measured spectral widths. We found that the 266.7nm bandwidth was large enough to support sub-30fs pulses, and due to cutting at the lower-wavelength end of the 200nm spectrum, we calculated an upper limit of 38fs. The pulses were compressed with pairs of CaF2 prisms to compensate for dispersion introduced by transmissive optics. Two-photon absorption (TPA) intensity autocorrelations revealed fully compressed pulse lengths of 36 ± 2 fs and 42 ± 4 fs for the 3rd and 4th harmonics, respectively.
138

Mechanical Evaluation of Electronic Properties of Materials

Nudo, Nicholas 02 October 2013 (has links)
The present research focuses on the coupling of mechanical and electrical properties of materials and culminates in a direct connection between applied strain to thin-films, thin-film electron binding energy, the energy loss via plastic deformation provided by an indentation, and the substrate resistance. The methods used in this research include X-ray photoelectron spectroscopy (XPS), nanoindentation, digital optical microscopy, and sputter coat deposition. It is discovered that there is a shift in electron binding energy on the scale of 0.2 eV to 1.4 eV in gold and palladium thin-films sputtered on polyvinylidene fluoride (PVDF) through the application of strain induced by a convex shape. There is a change in the area beneath the load-displacement curve measured via indentation from 5.55 x 10^-10 J to 4.78 x 10^-10 J when the gold-palladium thin-film sputtered on PVDF is changed from the flat arrangement to the convex arrangement. Furthermore, the strain also changed the electrical resistance of aluminum foil, which indicates that the substrate electrical resistance is affected by the induced strain. The internal resistance of a circuit developed for this research changed from 7.76 ohms for flat samples to 8.03 ohms and 8.33 ohms for flat and convex samples, respectively. It is expected that the research can be used to estimate the strain in nanogears and other devices at small length scales.
139

Molecular Interaction of Thin Film Photosensitive Organic Dyes on TiO2 Surfaces

Yu, Shun January 2011 (has links)
The photosensitive molecule adsorption on titanium dioxide (TiO2) forms the so-called “dye sensitized TiO2” system, a typical organic/oxide heterojunction, which is of great interest in catalysis and energy applications, e.g. dye-sensitized solar cell (DSSC). Traditionally, the transition metal complex dyes are the focus of the study. However, as the fast development of the organic semiconductors and invention of new pure organic dyes, it is necessary to expand the research horizon to cover these molecules and concrete the fundamental understanding of their basic properties, especially during sensitization.In this work, we focus on two different photosensitive molecules: phthalocyanines and triphenylamine-based dyes. Phthalocyanines are organic semiconductors with symmetric macro aromatic molecular structures. They possess good photoelectrical properties and good thermal and chemical stability, which make them widely used in the organic electronic industries. Triphenylamine-based dyes are new types of pure organic dyes which deliver high efficiency and reduce the cost of DSSC. They can be nominated as one of the strong candidates to substitute the ruthenium complex dyes in DSSC. The researches were carried out using classic surface science techniques on single crystal substrates and under ultrahigh vacuum condition. The photosensitive molecules were deposited by organic molecular beam deposition. The substrate reconstruction and ordering were checked by low energy electron diffraction. The molecular electronic, geometric structures and charge transfer properties were characterized by photoelectron spectroscopy, near edge X-ray absorption fine structure spectroscopy and resonant photoelectron spectroscopy (RPES). Scanning tunneling microscopy is used to directly image the molecular adsorption.For phthalocyanines, we select MgPc, ZnPc, FePc and TiOPc, which showed a general charge transfer from molecule to the substrate when adsorbed on rutile TiO2(110) surface with 1×1 and 1×2 reconstructions. This charge transfer can be prevented by modifying the TiO2 surface with pyridine derivatives (4-tert-butyl pyridine (4TBP), 2,2’-bipyridine and 4,4’-bipyridine), and furthermore the energy level alignment at the interface is modified by the surface dipole established by the pyridine molecules. Annealing also plays an important role to control the molecular structure and change the electronic structure together with the charge transfer properties, shown by TiOPc film. Special discussions were done for 4TBP for its ability to shift the substrate band bending by healing the oxygen vacancies, which makes it an important additive in the DSSC electrolyte. For the triphenylamine-based dye (TPAC), the systematic deposition enables the characterization of the coverage dependent changes of molecular electronic and geometric structures. The light polarization dependent charge transfer was revealed by RPES. Furthermore, the iodine doped TPAC on TiO2 were investigated to mimic the electrolyte/dye/TiO2 interface in the real DSSC.The whole work of this thesis aims to provide fundamental understanding of the interaction between photosensitive molecules on TiO2 surfaces at molecular level in the monolayer region, e.g. the formation of interfacial states and the coverage dependent atomic and electronic structures, etc. We explored the potential of the application of new dyes and modified of the existing system by identifying their advantage and disadvantage. The results may benefit the fields of dye syntheses, catalysis researches and designs of organic photovoltaic devices. / QC 20111114
140

The electronic structure and spectra of small metal clusters /

Thompson, Jeffrey M. January 1998 (has links)
Thesis (Ph. D.)--University of Washington, 1998. / Vita. Includes bibliographical references (leaves [97]-102).

Page generated in 0.0403 seconds