• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of Nb hydrides synthesized in high-pressure supercritical water by micro-beam hard X-ray photoelectron spectroscopy

Ikenaga, Eiji, Hasegawa, Masashi, Kusaba, Keiji, Niwa, Ken, Shiraki, Tatsuhito, Kato, Masahiko, Kondo, Hiroki, Soda, Kazuo 02 1900 (has links)
No description available.
2

Synthesis and Characterisation of Ultra Thin Film Oxides for Energy Applications

Fondell, Mattis January 2014 (has links)
This thesis describes studies of materials which can be exploited for hydrogen production from water and sunlight. The materials investigated are maghemite (γ-Fe2O3), magnetite (Fe3O4) and especially hematite (α-Fe2O3), which is an iron oxide with most promising properties in this field. Hematite has been deposited using Atomic Layer Deposition (ALD) - a thin-film technique facilitating layer-by-layer growth with excellent thickness control and step coverage. The iron oxides were deposited using bis-cyclopentadienyl iron (Fe(Cp)2) or iron pentacarbonyl (Fe(CO)5) in combination with an O2 precursor. Since it is crucial to have good control of the deposition process, the influence of substrate, process temperature, precursor and carrier gas have been investigated systematically. By careful control of these deposition parameters, three polymorphs of iron oxide could be deposited: hematite (α-Fe2O3), maghemite (γ-Fe2O3) and magnetite (Fe3O4). The deposited materials were characterized using X-ray Diffraction, Raman and UV-VIS Spectroscopy, and Scanning Electron Microscopy. Hard X-ray Photoelectron Spectroscopy (HAXPES) was also used, since it is a non-destructive, chemically specific, surface sensitive technique – the surface sensitivity resulting from the short mean escape depth of the photoelectrons. The depth probed can be controlled by varying the excitation energy; higher photoelectron energies increasing the inelastic mean-free-path in the material. HAXPES studies of atomic diffusion from F-doped SnO2 substrates showed increased doping levels of Sn, Si and F in the deposited films. Diffusion from the substrate was detected at annealing temperatures between 550 °C and 800 °C. Films annealed in air exhibited improved photocatalytic behavior; a photocurrent of 0.23 mA/cm2 was observed for those films, while the as-deposited hematite films showed no photo-activity whatsoever. The optical properties of low-dimensional hematite were studied in a series of ultra-thin films (thicknesses in the 2-70 nm range). The absorption maxima were shifted to higher energies for films thinner than 20 nm, revealing a different electronic structure in thin films.
3

Bipolar electrochemistry for high throughput screening applications

Munktell, Sara January 2016 (has links)
Bipolar electrochemistry is an interesting concept for high throughput screening techniques due to the ability to induce gradients in a range of materials and their properties, such as composition, particle size, or dopant levels, among many others. One of the key advantages of the method is the ability to test, create or modify materials without the need for a direct electrical connection. In this thesis, the viability of this method has been explored for a range of possible applications, such as metal recycling, nanoparticle modification and corrosion analysis. In the initial part of the work a process to electrodeposit gradients in metal composition was evaluated, with a view to applying the technique to the extraction and recycling of metals from fly ash. Compositional gradients in the metals under study could be readily obtained from controlled reference solutions, although the spatial resolution of the metals was not sufficient to perform separation. Only copper could be easily deposited from the fly ash solution. Bipolar electrodeposition was also successfully used to modify the particle size across substrates decorated with gold nanoparticles. The approach was demonstrated both for surfaces possessing either a uniform particle density or a gradient in particle density. In the latter case samples with simultaneous, orthogonal gradients in both particle size and density were obtained. A combination of the bipolar approach with rapid image analysis was also evaluated as a method for corrosion screening, using quantitative analysis of gradients in pitting corrosion damage on stainless steels in HCl as a model system. The factors affecting gradient formation and the initiation of corrosion were thoroughly investigated by the use of a scanning droplet cell (SDC) technique and hard x-ray photoelectron spectroscopy (HAXPES). The ability to screen arrays of different materials for corrosion properties was also investigated, and demonstrated for stainless steel and Ti-Al alloys with pre-formed compositional gradients. The technique shows much promise for further studies and for high throughput corrosion screening applications.
4

Coupling of electron spectroscopies for high resolution elemental depth distribution profiles in complex architectures of functional materials / Spectroscopies électroniques couplées pour l'analyse haute résolution d'agencements complexes de matériaux fonctionnels

Risterucci, Paul 23 April 2015 (has links)
Ce travail de thèse est focalisé sur la détermination, de manière non-destructive, d'interfaces profondément enterrées dans des empilements multi-couches utilisés dans les conditions de technologie réelles au travers d'une méthode innovante basée sur la photoémission avec utilisation de rayons-x de haute énergie (HAXPES) et l'analyse du fond continu inélastique. Au cours de cette thèse, une procédure numérique a été développée pour quantifier la correspondance entre la mesure du fond continu faite par HAXPES et la simulation du fond continu représentative d'une distribution en profondeur donnée. Cette méthode permet de trouver la distribution en profondeur d'un élément grâce à une procédure semi automatisée. Dans un premier temps cette méthode a été testée en étudiant une couche ultra fine de lanthane enterrée à une profondeur >50 nm dans un dispositif de grille métallique high-k. L'influence des paramètres utilisés lors de l'analyse y est étudiée et révèle l'importance principale d'un paramètre en particulier, la section efficace de diffusion inélastique. La combinaison de mesures HAXPES avec l'analyse du fond continu inélastique utilisant cette nouvelle méthode permet d'augmenter la profondeur de sonde jusqu'à un niveau sans précédent. Ainsi l'échantillon peut être sondé jusqu'à 65 nm sous la surface avec une haute sensibilité à une couche nanométrique. Dans un second temps, la méthode précédemment validée d'analyse de fond continu inélastique est combinée avec une étude haute résolution des niveaux de cœur dans un échantillon servant de source dans un transistor à haute mobilité. Les deux analyses sont complémentaires puisqu'elles permettent d'obtenir la distribution en profondeur des éléments ainsi que leur environnement chimique. Le résultat donne une description complète des diffusions élémentaires dans l'échantillon suivant les différentes conditions de recuit. / This thesis tackles the challenge of probing in a non-destructive way deeply buried interfaces in multilayer stacks used in technologically-relevant devices with an innovative photoemission method based on Hard X-ray PhotoElectron Spectroscopy (HAXPES) and inelastic background analysis. In this thesis, a numerical procedure has been implemented to quantify the matching between a HAXPES measured inelastic background and a simulated inelastic background that is representative of a given depth distribution of the chemical elements. The method allows retrieving depth distributions at large depths via a semi-automated procedure. First, this method has been tested by studying an ultra-thin layer of lanthanum buried at depth >50 nm in a high-k metal gate sample. The influence of the parameters involved in the analysis is studied unraveling the primary importance of the inelastic scattering cross section. The combination of HAXPES with inelastic background analysis using this novel method maximizes the probing depth to an unprecedented level, allowing to probe the sample up to 65 nm below the surface with a high sensitivity to a nm-thick layer. Second, the previously-checked inelastic background analysis is combined with that of high resolution core-level spectra in the case of the source part of a high electron mobility transistor. The two analyses are complementary as they allow retrieving the elemental depth distribution and the chemical state, respectively. The result gives a complete picture of the elemental intermixing within the sample when it is annealed at various temperatures. / Denne afhandling omhandler problemet med at probe dybt begravede grænseflader i multilags stacks, som bruges i teknologisk relevante devices, med en innovativ fotoemissions metode, der er baseret på Hard X-ray PhotoElectron Spectroscopy (HAXPES) og analyse af den uelastiske baggrund. I afhandlingen er en numerisk procedure blevet implementeret til at kvantificere forskellen mellem en HAXPES målt uelastisk baggrund og en modelleret baggrund, som svarer til en given dybdefordeling af atomerne. Metoden muliggør, med en halv-automatisk procedure, at bestemme dybdefordelingen i store dybder. Metoden er først blevet testet ved at studere et ultra-tyndt lag af lanthan, som er begravet i en dybde > 50 nm i en high-k-metal-gate prøve. Indflydelsen af parametrene der ingår i analysen er blevet studeret for at opklare den primære betydning af det anvendte uelastiske spredningstværsnit. Kombinationen af HAXPES med analyse af den uelastiske baggrund og brug af den nye numeriske metode giver en hidtil uset probe-dybde, som giver mulighed for at probe den atomare sammens ætning i op til 65 nm dybde under overfladen og med høj følsomhed af et kun nm tykt lag. Dernæst er den uelastiske baggrundsanalyse blevet kombineret med højopløst core-level spektroskopi for at studere de aktive dele i en høj-elektronmobilitets transistor. De to analyser er komplementære, idet de henholdsvis bestemmer den atomare fordeling og atomernes kemiske bindingstilstand. Resultatet giver et fuldstændigt billede af atomernes omfordeling i prøven når denne opvarmes til forskellige temperaturer.
5

Characterization of deeply buried interfaces by Hard X-ray Photoelectron Spectroscopy / Caractérisation d’interfaces profondément enterrées par spectroscopie de photoélectrons à haute énergie (HAXPES)

Zborowski, Charlotte 27 June 2018 (has links)
Cette thèse vise à améliorer la méthode d'analyse du fond continu inélastique afin de l'appliquer à des cas qui présentent un intérêt technologique. En effet, ces améliorations sont cruciales car elles portent sur des critères de précision et de gain de temps, plus particulièrement pour l’étude de dispositifs présentant plusieurs couches profondément enterrées de matériaux bien distincts. Ainsi, l'analyse du fond continu inélastique associée à la spectroscopie de photoélectrons à rayons X durs (HAXPES) présente un grand intérêt car l’HAXPES permet de sonder plus profondément dans un échantillon qu'avec la spectroscopie de photoélectrons à rayons X classique (XPS). Ce présent travail porte sur des échantillons technologiquement pertinents, principalement des transistors à haute mobilité d'électrons (HEMTs), à certaines étapes cruciales de leur processus de fabrication, tels que des recuits. Il est donc très important que ces analyses soient effectuées de manière non destructive afin de préserver les interfaces enterrées. Ce sont souvent l'emplacement de phénomènes complexes qui sont critiques pour les performances du dispositif et une meilleure compréhension est une condition préalable à l’amélioration des dispositifs. Dans ce travail, les phénomènes de diffusion en profondeur sont étudiés grâce à l’analyse du fond continu inélastique associée à l’HAXPES (en utilisant le logiciel QUASES) pour des profondeurs allant jusqu'à 60 nm. Les résultats de distribution en profondeur présentent des écarts par rapport aux mesures TEM inférieures à 5%. Le choix des paramètres d'entrée de la méthode est discuté pour une large gamme d'échantillons et des règles simples en sont issues qui rendent l'analyse réelle plus facile et plus rapide à effectuer. Enfin, il a été montré que la spectromicroscopie faite avec la technique HAXPEEM peut fournir des spectres à chaque pixel utilisables pour l’analyse du fond continu inélastique. Cela peut fournir une cartographie 3D de la distribution en profondeur des éléments de manière non-destructive. / This thesis aims at improving the inelastic background analysis method in order to apply it to technologically relevant samples. Actually, these improvements are utterly needed as they concern criteria of accuracy and time saving particularly for analysis of devices presenting deeply buried layers with different materials. For this purpose, the interest of the inelastic background analysis method is at its best when combined with hard X-ray photoelectron spectroscopy (HAXPES) because HAXPES allows to probe deeper in the sample than with conventional X-ray photoelectron spectroscopy (XPS). The present work deals with technologically relevant samples, mainly the high-electron mobility transistor (HEMT), at some crucial steps of their fabrication process as annealing. Actually, it is very important that these analyses shall be performed non-destructively in order to preserve the buried interfaces. These are often the location of complex phenomena that are critical for device performances and a better understanding is often a prerequisite for any improvement. In this thesis, the in-depth diffusion phenomena are studied with the inelastic background analysis technique (using the QUASES software) combined with HAXPES for depth up to 60 nm. The depth distribution results are determined with deviations from TEM measurements smaller than a typical value of 5%. The choice of the input parameters of the method is discussed over a large range of samples and simple rules are derived which make the actual analysis easier and faster to perform. Finally, it was shown that spectromicroscopy obtained with the HAXPEEM technique can provide spectra at each pixel usable for inelastic background analysis. This is a proof of principle that it can provide a 3D mapping of the elemental depth distribution with a nondestructive method. / Denne afhandling har til formål at forbedre den uelastiske baggrundsanalysemetode til anvendelser i den til teknologiske industri. Faktisk er disse forbedringer absolut nødvendige, for at opnå nøjagtighed og tidsbesparelse, især for analyse af prøver med dybt begravede lag af forskellige materialer. Til det formål er interessen for den uelastiske baggrundsanalysemetode bedst i kombination med hård røntgenfotoelektron-spektroskopi (HAXPES), fordi HAXPES gør det muligt at probe dybere i prøven end med konventionel røntgenfotoelektron-spektroskopi (XPS). Dette arbejde beskæftiger sig med teknologisk relevante prøver, hovedsagelig høj-elektron mobilitetstransistor (HEMT), på nogle afgørende trin i deres fremstillingsproces som fx annealing. Faktisk er det meget vigtigt, at disse analyser udføres på en ikke-destruktiv måde for at bevare de begravede grænseflader. Det er ofte her de komplekse fysiske fænomener opstår, som er kritiske for fuktionaliteten, og en bedre forståelse af grænsefladerne er ofte en forudsætning for at kunne forbedre denne. I denne afhandling studeres de dybdegående diffusionsfænomener med den uelastiske baggrundsanalyse teknik (ved hjælp af QUASES software) kombineret med HAXPES for dybder op til 60 nm. Dybdestributionsresultaterne har afvigelser fra TEM-målinger mindre end en typisk værdi på 5%. Valget af input parametre for metoden er diskuteret på bagground af et stort udvalg af prøver samt omfattende simuleringer og enkle regler er udledt, hvilket gør den praktiske analyse nemmere og hurtigere at udføre. Endelig blev det vist, at spektromikroskopi opnået med HAXPEEM-teknikken kan tilvejebringe spektre ved hver enkelt pixel som kan anvendes til uelastisk baggrundsanalyse. Dette viser at i princippet kan en 3D-billeddannelse af den elementære dybdefordeling bestemmes ikke destruktivt.

Page generated in 0.1273 seconds