• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 39
  • 20
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 149
  • 149
  • 137
  • 41
  • 40
  • 40
  • 38
  • 37
  • 31
  • 28
  • 27
  • 26
  • 23
  • 21
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantum chemical calculations of non-linear optical absorption

Cronstrand, Peter January 2004 (has links)
This thesis represents a quantum chemical treatise ofvarious types of interactions between radiation and molecularsystems, with special emphasis on the nonlinear opticalprocesses of Multi-Photon Absorption and Excited StateAbsorption. Excitation energies, transition dipole moments,two-photon and three-photon tensor elements have beencalculated from different approaches; density functional theoryandab-initiotheory, employing different orders ofcorrelation treatment with the purpose to provide accuratevalues as well as evaluate the quality of the lower ordermethods. A combined study of the Multi-Photon Absorption andExcited State Absorption processes is motivated partly becausethey both contribute to the total optical response of a systemsubjected to intense radiation, but also because of theirconnection through so-called sum-over-states expressions. Thelatter feature is exploited in a generalized few-states model,which incorporates the polarization of the light and thedirections of the transition dipole moments constructing anexcitation channel, which thereby enables a more comprehensivecomparison of the attained transition dipole moments withexperimental data. Moreover, by decomposing a complex nonlinearresponse process such as Two-Photon Absorption into moreintuitive quantities, generalized few-states models may alsoenable a more elaborate interpretation of computed orexperimental results from which guidelines can be extracted inorder to control or optimize the property of interest. Ageneral conclusion originating from these models is that thetransition dipole moments in an excitation channel should bealigned in order to maximize the Two-Photon Absorptionprobability. The computational framework employed is responsetheory which through the response functions (linear, quadratic,cubic) offers alternative routes for evaluating the propertiesin focus; either directly and untruncated through the singleresidue of the quadratic or cubic response func- tions orthrough various schemes of truncated sum-over-statesexpressions where the key ingredients, transition dipolemoments, can be identified from the single residue of thelinear response function and double residue of the quadraticresponse function. The range of systems treated in the thesisstretches from diatomics, such as carbon monoxide and lithiumhydride, via small to large fundamental organic molecules, suchas formaldehyde, tetrazine and the trans-polyenes, to largechro- mophores, such astrans-stilbene, cumulenes, dithienothiophene,paracyclophane and organo-metallic systems, such as theplatinum(II)ethynyl compounds. / QC 20120320
2

Quantum chemical calculations of non-linear optical absorption

Cronstrand, Peter January 2004 (has links)
<p>This thesis represents a quantum chemical treatise ofvarious types of interactions between radiation and molecularsystems, with special emphasis on the nonlinear opticalprocesses of Multi-Photon Absorption and Excited StateAbsorption. Excitation energies, transition dipole moments,two-photon and three-photon tensor elements have beencalculated from different approaches; density functional theoryand<i>ab-initio</i>theory, employing different orders ofcorrelation treatment with the purpose to provide accuratevalues as well as evaluate the quality of the lower ordermethods. A combined study of the Multi-Photon Absorption andExcited State Absorption processes is motivated partly becausethey both contribute to the total optical response of a systemsubjected to intense radiation, but also because of theirconnection through so-called sum-over-states expressions. Thelatter feature is exploited in a generalized few-states model,which incorporates the polarization of the light and thedirections of the transition dipole moments constructing anexcitation channel, which thereby enables a more comprehensivecomparison of the attained transition dipole moments withexperimental data. Moreover, by decomposing a complex nonlinearresponse process such as Two-Photon Absorption into moreintuitive quantities, generalized few-states models may alsoenable a more elaborate interpretation of computed orexperimental results from which guidelines can be extracted inorder to control or optimize the property of interest. Ageneral conclusion originating from these models is that thetransition dipole moments in an excitation channel should bealigned in order to maximize the Two-Photon Absorptionprobability. The computational framework employed is responsetheory which through the response functions (linear, quadratic,cubic) offers alternative routes for evaluating the propertiesin focus; either directly and untruncated through the singleresidue of the quadratic or cubic response func- tions orthrough various schemes of truncated sum-over-statesexpressions where the key ingredients, transition dipolemoments, can be identified from the single residue of thelinear response function and double residue of the quadraticresponse function. The range of systems treated in the thesisstretches from diatomics, such as carbon monoxide and lithiumhydride, via small to large fundamental organic molecules, suchas formaldehyde, tetrazine and the trans-polyenes, to largechro- mophores, such as<i>trans</i>-stilbene, cumulenes, dithienothiophene,paracyclophane and organo-metallic systems, such as theplatinum(II)ethynyl compounds.</p>
3

Photophysics of Organic Probes and their Applications in Bioimaging & Photodynamic Therapy

Kim, Bosung 01 January 2015 (has links)
Over the past several decades the phenomenon of luminescence (divided into fluorescence and phosphorescence) has received great attention in the field of biological science. This quest has motivated scientists for a variety of applications, including fluorescence imaging. Fluorescence microscopy techniques that provide unique advantages, such as high spatial resolution and superior sensitivity, have been regarded as attractive tools in biophotonics. With the progress of ultrafast laser sources, two-photon absorption (2PA), in which a molecule absorbs two photons simultaneously, has opened possibilities of using it for various applications. Two-photon fluorescence microscopy (2PFM), which affords deeper tissue penetration and excellent three-dimensional (3D) images, is now being widely employed for bioimaging. This dissertation focuses on the design, synthesis, and photophysical characterization of new fluorophores, as well as desirable applications. Chapter 1 gives an account of a brief introduction of luminescence and 2PA, as well as their utilities in biological applications. In chapter 2, a series of new BODIPY derivatives are presented along with their comprehensive linear and nonlinear characteristics. They exhibited excellent photophysical properties including large extinction coefficients, high fluorescence quantum yields, good photostability, and reasonable two-photon absorption cross sections. Two promising compounds were further evaluated as NIR fluorescent probes in one-photon and two-photon fluorescence imaging. Chapter 3 provides the design, synthesis, and photophysical characterization of two BODIPY dyes. In order to assess the potential of using the dye as a fluorescent probe, Lysotracker Red, a commercial lysosomal marker, was investigated for comparison purposes. The results indicate that figure of merit of both compounds were three orders of magnitude higher than that of Lysotracker Red. With an eye towards applications, one of the compounds was encapsulated in silica-based nanoparticles for in vitro and ex vivo one-photon and two-photon fluorescence imaging, in which the surface of the nanoparticle was modified with RGD peptides for specific targeting. The nanoprobe exhibited good biocompatibility and highly selective RGD-mediated uptake in ?V?3 integrin-overexpressing cancers, while maintaining efficient fluorescence quantum yield and high photostability. In chapter 4, the synthesis and photophysical properties of a novel photosensitizer with heavy atoms (halogen) were presented. The dye exhibited low fluorescence quantum yield, resulting in high singlet oxygen generation quantum yield. In vitro photodynamic studies demonstrated that photosensitization of the agent can induce cellular damage, subsequently leading to cell death by a necrotic cell death mechanism, supporting the therapeutic potential of using the agent for photodynamic therapy.
4

Theoretical Characterization of Optical Processes in Modecular Complexes

Liu, Kai January 2008 (has links)
The main theme of this thesis is to study effects of different environments on geometric and electronic structures, as well as optical responses, of molecules using time-(in)dependent density functional theory. Theoretical calculations have been carried out for properties that can be measured by conventional and advanced experimental techniques, including one-photon absorption (OPA), two-photon absorption (TPA), surface-enhanced Raman scattering (SERS) and second order nonlinear optical (NLO) response. The obtained good agreement between the theory and the experiment allows to further extract useful information about inter- and intra-molecular interactions that are not accessible experimentally. By comparing calculated one-photon absorption spectra of aluminum phthalocyanine chloride (AlPcCl) and AlPcCl -water complexes with the corresponding experiments, detailed information about the interaction between water molecules and AlPcCl, and geometric changes of AlPcCl molecule has been obtained. Effects of aggregation on two-photon absorption spectra of octupolar molecules have been examined. It is shown that the formation of clusters through inter-molecular hydrogen bonding can drastically change profiles of TPA spectra. It has also demonstrated that a well designed molecular aggregate/cluster, dendrimer, can enhance the second order nonlinear optical response of the molecules. In collaboration with experimentalists, a series of end-capped triply branched dendritic chromophores have been characterized, which can lead to large enhancement of the second order NLO property when the dipoles of the three branches in the dendrimers are highly parallelized. Surface-enhanced Raman scattering has made the detection of single molecules on metal surface become possible. Chemically bonded molecule-metal systems have been extensively studied. We have shown in a joint experimental and theoretical work that stable Raman spectra of a non-bonding molecule, perylene, physically adsorbed on Ag nano-particles can also be observed at low temperature. It is found that the local enhanced field has a tendency to drive molecule toward a gap of two closely lying nano-particles. The trapped molecule can thus provide a stable Raman spectrum with high resolution when its thermal motion is reduced at low temperature. For the ever growing size of molecular complexes, there is always the need to develop new computational methods. A conceptually simple but computationally efficient method, named as central insertion scheme (CIS), is proposed that allows to calculate electronic structure of quasi-periodic system containing more than 100,000 electrons at density functional theory levels. It enables to monitor the evolution of electronic structure with respect to the size of the system. / QC 20100823
5

Luminiscenční nanočástice pro 3D zobrazování / Luminescent nanoparticles for 3D imaging

Smolka, Rastislav January 2021 (has links)
The aim of this diploma thesis is to study the optical properties of new -conjugated molecules based on 1,4-di(4'-N, N-diphenylaminostyryl)benzene and their potential application in advanced imaging techniques of biological specimens, the so-called multiphoton microscopy. The thesis focuses mainly on the characterization of their optical properties and the determination of their two-photon absorption cross-section using a unique laser equipment. Furthermore, a suitable methodology for the preparation of nanoparticles from these molecules, their characterization and stability are also developed. The thesis also investigates the influence of structure on the optical properties of these molecules. The relation between the length of the conjugated system and the presence of substituents on the backbone has been shown for the optical properties of the molecules in the solvent, the position and shape of the two-photon absorption spectrum and the value of two-photon absorption cross-section. It has been shown that this substance retains its unique fluorescent properties even in the form of nanoparticles and therefore appears to be a suitable candidate for the observation of biological specimens using multiphoton fluorescence microscopy. The work contributes to the knowledge base for the design of the chemical structure of molecules with desired properties.
6

Development of Photoreactive Organic Compounds with Large Two-Photon Absorption Cross Sections

Urdabayev, Nurtay 01 June 2006 (has links)
No description available.
7

IR Sensitive Photorefractive Polymers, The First Updateable Holographic 3D Display

Tay, Savas January 2007 (has links)
This work presents recent advances in the development of infra-red sensitive photorefractive polymers, and updateable near real-time holographic 3D displays based on photorefractive polymers. Theoretical and experimental techniques used for design, fabrication and characterization of photorefractive polymers are outlined. Materials development and technical advances that made possible the use of photorefractive polymers for infra-red free-space optical communications, and 3D holographic displays are presented.Photorefractive polymers are dynamic holographic materials that allow recording of highly efficient reversible holograms. The longest operation wavelength for a photorefractive polymer before this study has been 950nm, far shorter than 1550nm, the wavelength of choice for optical communications and medical imaging. The polymers shown here were sensitized using two-photon absorption, a third order nonlinear effect, beyond the linear absorption spectrum of organic dyes, and reach 40% diffraction efficiency with a 35ms response time at this wavelength. As a consequence of two-photon absorption sensitization they exhibit non-destructive readout, which is an important advantage for applications that require high signal-to-noise ratios.Holographic 3D displays provide highly realistic images without the need for special eyewear, making them valuable tools for applications that require "situational awareness" such as medical, industrial and military imaging. Current commercially available holographic 3D displays employ photopolymers that lack image updating capability, resulting in their restricted use and high cost per 3D image. The holographic 3D display shown here employs photorefractive polymers with nearly 100% diffraction efficiency and fast writing time, hours of image persistence, rapid erasure and large area, a combination of properties that has not been shown before. The 3D display is based on stereography and utilizes world's largest photorefractive devices (4x4 inch in size). It can be recorded within a few minutes, viewed for several hours without the need for refreshing and can be completely erased and updated with new images when desired, thusly comprising the first updateable holographic 3D display with memory, suitable for practical use.
8

Microfabricação por fotopolimerização via absorção de dois fótons / Two-photon absorption photopolymerization microfabrication

Gomes, Vinicius Tribuzi Rodrigues Pinheiro 10 February 2009 (has links)
Neste trabalho usamos pulsos de femtossegundos na fabricação de estruturas poliméricas em escala microscópica, através da técnica de fotopolimerização via absorção de dois fótons. Graças ao confinamento espacial da polimerização, resultante do processo de absorção de dois fótons, este método permite a fabricação de microestruturas tridimensionais complexas, com alta resolução, visando diversas aplicações tecnológicas, de fotônica até biologia. Inicialmente, desenvolvemos a técnica de fotopolimerização via absorção de dois fótons, desde a implantação da montagem óptica até a confecção dos sistemas de movimentação e controle do posicionamento do feixe laser. Através da fabricação e caracterização de microestruturas, produzidas em resinas acrílicas, o sistema foi aperfeiçoado permitindo a produção de microestruturas da pordem de 30um com razoável resolução espacial. Uma vez que a maior parte as microestruturas reportadas na literatura são elementos passivos, ou seja, suas propriedades ópticas não podem ser controladas por meios externos, numa segunda etapa deste projeto produzimos microestruturas opticamente ativas. Neste caso, a microfabricação foi feita em resinas acrílicas dopadas Rodamina B, exibindo, portanto, fluorescência quando excitadas com luz de comprimento de onda em torno de 540nm. Finalmente, visando a produção eficiente de estruturas em escala milimétrica para aplicações biológicas, implementamos também um sistema de fotopolomerização via absorção de um fóton. / In this work we used femtosecond pulses to fabricate polymeric structures at microscopic scale, by using the two-photon photopolymerization technique. Due to the spatial confinement of the polymerization, provided by the two-photon absorption, this method allows for the fabrication of complex three-dimensional microstructures, with high resolution, aiming to several technological applications, from photonics to biology. Initially, we developed the two-photon polimerization technique, from the optical setup to the mechanical systems to control the movement and the positioning of the laser beam. Through the fabrication and characterization os microestrutures, produced in acrylic resin, the apparatus was improved, allowing the fabriation of 30-um microstructures with reasonable spatial resolution. Since most the report in the literature are passive elements that is, their optical properties cannot be altered by any external means, in a second stage of this project we fabricated optical active microstructures. In this case, the microfabrication was carried out in acrylic resins doped with Rodamine B, exhibiting, consenquently, fluorescence when excited with light at 540nm. Finally, in order to eficiently produce milimetric structures for biological applications, we also implemented a one-photon polimerization setup.
9

The Study of Hyper-Rayleigh Scattering of Organic Materials at 1907nm

Kuo, Tz-Yuan 24 July 2002 (has links)
The technique of hyper-Rayleigh scattering is employed to measure the first molecular hyperpolarizabilities£]of nonlinear optical chromophores provided by Industrial Technology Research Institute. £]0. In the thesis, the effect of the molecular structure and the solvent on the hyperpolarizabilities will be discussed further.
10

Μέτρηση οπτικών ιδιοτήτων οργανικών μορίων μέσω διφωτονικά διεγερμένου φθορισμού με femtosecond παλμούς laser

Στεφανάτος, Σταύρος 12 November 2008 (has links)
Μελέτη διφωτονικά διεγερμένου φθορισμού για τον υπολογισμό των ενεργών διατομών διφωτονικής απορρόφησης οργανικών μορίων. / Study of the two photon excitation fluorescence for the estimation of two photon cross sections of organic molecules

Page generated in 0.0975 seconds