• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Theoretical Characterization of Optical Processes in Modecular Complexes

Liu, Kai January 2008 (has links)
The main theme of this thesis is to study effects of different environments on geometric and electronic structures, as well as optical responses, of molecules using time-(in)dependent density functional theory. Theoretical calculations have been carried out for properties that can be measured by conventional and advanced experimental techniques, including one-photon absorption (OPA), two-photon absorption (TPA), surface-enhanced Raman scattering (SERS) and second order nonlinear optical (NLO) response. The obtained good agreement between the theory and the experiment allows to further extract useful information about inter- and intra-molecular interactions that are not accessible experimentally. By comparing calculated one-photon absorption spectra of aluminum phthalocyanine chloride (AlPcCl) and AlPcCl -water complexes with the corresponding experiments, detailed information about the interaction between water molecules and AlPcCl, and geometric changes of AlPcCl molecule has been obtained. Effects of aggregation on two-photon absorption spectra of octupolar molecules have been examined. It is shown that the formation of clusters through inter-molecular hydrogen bonding can drastically change profiles of TPA spectra. It has also demonstrated that a well designed molecular aggregate/cluster, dendrimer, can enhance the second order nonlinear optical response of the molecules. In collaboration with experimentalists, a series of end-capped triply branched dendritic chromophores have been characterized, which can lead to large enhancement of the second order NLO property when the dipoles of the three branches in the dendrimers are highly parallelized. Surface-enhanced Raman scattering has made the detection of single molecules on metal surface become possible. Chemically bonded molecule-metal systems have been extensively studied. We have shown in a joint experimental and theoretical work that stable Raman spectra of a non-bonding molecule, perylene, physically adsorbed on Ag nano-particles can also be observed at low temperature. It is found that the local enhanced field has a tendency to drive molecule toward a gap of two closely lying nano-particles. The trapped molecule can thus provide a stable Raman spectrum with high resolution when its thermal motion is reduced at low temperature. For the ever growing size of molecular complexes, there is always the need to develop new computational methods. A conceptually simple but computationally efficient method, named as central insertion scheme (CIS), is proposed that allows to calculate electronic structure of quasi-periodic system containing more than 100,000 electrons at density functional theory levels. It enables to monitor the evolution of electronic structure with respect to the size of the system. / QC 20100823
2

Controlled coupling of nanoparticles to polymer-based photonic structures / Etudes théorique et expérimentale du couplage des nanoparticules uniques dans des structures photoniques à base de polymère

Nguyen, Dam Thuy Trang 26 January 2018 (has links)
Dans ce travail, nous étudions théoriquement et expérimentalement le couplage entre une nanoparticule unique de différentes natures, comme fluorescente, non-linéaire, plasmonique, etc., et une structure photonique en matériau polymère. Dans un premier temps, nous avons optimisé la méthode dite écriture directe par laser par absorption à un photon pour réaliser des structures photoniques de bonne qualité à la demande. Ensuite, nous avons également exploité l'effet thermique induit par le laser d’excitation continue, pour simplifier la méthode de fabrication LOPA et améliorer les structures fabriquées. Puis nous avons introduit de façon précise une seule nanoparticule unique à un endroit désiré dans la structure photonique. Le couplage nanoparticule/structure photonique a été réalisé par le même système optique. Ce couplage a été démontré par une augmentation du nombre de photon émis par la nanoparticule fluorescente et par une forte amélioration du signal de génération de seconde harmonique. Parallèlement, nous avons effectué des calculs numériques par la méthode FDTD pour prédire les propriétés optiques intéressantes des structures photoniques et pour confirmer les résultats expérimentaux. / In this study, we investigate theoretically and experimentally the nanoparticles/photonic structures coupling. In detail, the work focuses on the elaboration and applications of structured polymer materials, as well as the manipulation of optical properties of various kinds of nano-objects such as gold nanoparticles, magnetic and nonlinear nanoparticles, etc. The coupling of each kind of nanoparticles addresses a specific goal. In order to conduct research, we first build and test an optical confocal setup, which allows us to both image and fabricate nanostructures at a sub-lambda resolution. Besides, we propose a method exploiting the thermal effect caused by a continuous-wave laser source to optimize 2D and 3D structures realized by low one-photon absorption (LOPA)-based direct laser writing (DLW). Then by using this technique, we are capable of precisely determining the position and embedding various kinds of nanoparticles (gold nanoparticles, nonlinear nanoparticles, and magnetic nanoparticles) into arbitrary polymeric photonic structures. The characterization of the fabricated structures is carried out using the same confocal setup. We demonstrate a good enhancement of the optical properties of the nanoparticles embedded inside photonic structures. We also perform numerical calculations by using a FDTD method to confirm the experimental results.
3

Nonlinear Optical Properties Of Organic Chromophores Calculated Within Time Dependent Density Functional Theory

Tafur, Sergio 01 January 2007 (has links)
Time Dependent Density Functional Theory offers a good accuracy/computational cost ratio among different methods used to predict the electronic structure for molecules of practical interest. The Coupled Electronic Oscillator (CEO) formalism was recently shown to accurately predict Nonlinear Optical (NLO) properties of organic chromophores when combined with Time Dependent Density Functional Theory. Unfortunately, CEO does not lend itself easily to interpretation of the structure activity relationships of chromophores. On the other hand, the Sum Over States formalism in combination with semiempirical wavefunction methods has been used in the past for the design of simplified essential states models. These models can be applied to optimization of NLO properties of interest for applications. Unfortunately, TD-DFT can not be combined directly with SOS because state-to-state transition dipoles are not defined in the linear response TD approach. In this work, a second order CEO approach to TD-DFT is simplified so that properties of double excited states and state-to-state transition dipoles may be expressed through the combination of linear response properties. This approach is termed the a posteriori Tamm-Dancoff approximation (ATDA), and validated against high-level wavefunction theory methods. Sum over States (SOS) and related Two-Photon Transition Matrix formalism are then used to predict Two-Photon Absorption (2PA) profiles and anisotropy, as well as Second Harmonic Generation (SHG) properties. Numerical results for several conjugated molecules are in excellent agreement with CEO and finite field calculations, and reproduce experimental measurements well.

Page generated in 0.0814 seconds