101 |
Design, simulation, and characterization toolset for nano-scale photonic crystal devicesReinke, Charles M. 04 December 2009 (has links)
The objective of this research is to present a set of powerful simulation, design,
and characterization tools suitable for studying novel nanophotonic devices. The
simulation tools include a three-dimensional finite-difference time-domain code adapted
for parallel computing that allows for a wide range of simulation conditions and material
properties to be studied, as well as a semi-analytical Green's function-based complex
mode technique for studying loss in photonic crystal waveguides. The design tools
consist of multifunctional photonic crystal-based template that has been simulated with
nonlinear effects and measured experimentally, and planar slab waveguide structure that
provides highly efficient second harmonic generation is a chip-scale device suitable for
photonic integrated circuit applications. The characterization tool is composed of a
phase-sensitive measurement system using a lock-in amplifier and high-precision optical
stages, suitable for probing the optical characteristics of nanoscale devices. The high
signal-to-noise ratio and phase shift data provided by the lock-in amplifier allow for
accurate transmission measurements as well as a phase spectrum that contains
information about the propagation behavior of the device beyond what is provided by the
amplitude spectrum alone.
|
102 |
Hibridinių fotoninių kristalų optinės savybės / Optical features of hybrid photonic crystalsRastenienė , Loreta 24 September 2008 (has links)
Paskutiniais dešimtmečiais puslaidininkių fizika vaidino svarbų vaidmenį beveik kiekvienoje šiuolaikinių technologijų srityje. Šiame greitai besikeičiančiame pasaulyje mūsų jau nebetenkina supantys buities ir darbo prietaisai, valdomi naudojantis elektronais. Mums reikalingas didesnis kompiuterių operatyvumas, didesnė atminties talpa, greitesnis telekomunikacinis ryšys, ir todėl reikalingos naujos technologijos bei sprendimai. Naujas žingsnis fotoninės struktūros. Žinių ir technologijų pasiekimai leidžia fotoninių sturktūrų savybes taikyti šviesos valdymui. Dabartiniame optinės fizikos tyrinėjimų etape šviesos sąveika su medžiaga labai aktuali: ji gali atrodyti universali ir invariantiška, kadangi šviesa jau kontroliuojama pasitelkus hibridinius fotoninius kristalus. Šių darinių tyrimai patrauklūs tiek fundamentaliam, tiek taikomajam mokslui. Į opalą infiltravę skystąjį kristalą, gauname hibridinį fotoninį kristalą. Jo optines savybes galima keisti priklausomai nuo infiltruotos medžiagos lūžio rodiklio. Fotoniniai kristalai, reikia tikėtis, bus taikomi ateities fotoniniuose įrenginiuose, telekomunikacijoje. Su šia sritimi siejamos tokios pat ar net didesnės viltys, kokios buvo siejamos su prieš 50 metų išrastu puslaidininkiniu tranzistoriumi, pakeitusiu techniką ir davusiu impulsą naujoms mokslo kryptims.
Teoriškai fotoninių kristalų egzistavimą nepriklausomai vienas nuo kito 1987 metais pirmieji aprašė E.Jablonovičius ir S. Johnas. Tačiau prireikė dar dešimt metų, kol buvo... [toliau žr. visą tekstą] / We live in the rapidly developing technological world. However, fields of communication, computer memory, and data processing require considerable improvements. The speed of data transportation is acceptable but capacity is low. There is a growing need for new technologies that rapidly detect and treat diseases at an early stage or even pre-stage. When we get accustomed to the advance, we demand more compact, energy-efficient, rapidly-responding and environmentally-safe technologies. During the last century this problem was solved by switching to transportation of electronic data, which connected people around the world. This approach had changed our lives, but about twenty years ago this technology reached its limits, while need for an even higher transportation capacity increases. Now we need faster computers and other state-of-the-art technological solutions: electrons are too slow and we have to use photons.
Over the last decade, the steady progress regarding ability to fabricate hybrid photonic nanostructures led to a rich variety of different one-, two-, and three-dimensional dielectric/organic and/or metallic periodic structures. They demonstrate qualitatively new and fascinating linear-optical, nonlinear-optical, and quantum-optical features which provide an unprecedented control of light propagation and light-matter interaction. Photonic-based technology, coupled with nanotechnology, can meet many of these challenges.
In this work fabrication of hybrid photonic... [to full text]
|
103 |
Active slow light in silicon photonic crystals : tunable delay and Raman gainRey, Isabella H. January 2012 (has links)
In the past decade, great research effort was inspired by the need to realise active optical functionalities in silicon, in order to develop the full potential of silicon as a photonic platform. In this thesis we explore the possibility of achieving tunable delay and optical gain in silicon, taking advantage of the unique dispersion capabilities of photonic crystals. To achieve tunable optical delay, we adopt a wavelength conversion and group velocity dispersion approach in a miniaturised engineered slow light photonic crystal waveguide. Our scheme is equivalent to a two-step indirect photonic transition, involving an alteration of both the frequency and momentum of an optical pulse, where the former is modified by the adiabatic tuning possibilities enabled by slow light. We apply this concept in a demonstration of continuous tunability of the delay of pulses, and exploit the ultrafast nature of the tuning process to demonstrate manipulation of a single pulse in a train of two pulses. In order to address the propagation loss intrinsic to slow light structures, with a prospect for improving the performance of the tunable delay device, we also investigate the nonlinear effect of stimulated Raman scattering as a means of introducing optical gain in silicon. We study the influence of slowdown factors and pump-induced losses on the evolution of a signal beam along the waveguide, as well as the role of linear propagation loss and mode profile changes typical of realistic photonic crystal structures. We then describe the work conducted for the experimental demonstration of such effect and its enhancement due to slow light. Finally, as the Raman nonlinearity may become useful also in photonic crystal nanocavities, which confine light in very small volumes, we discuss the design and realisation of structures which satisfy the basic requirements on the resonant modes needed for improving Raman scattering.
|
104 |
Propagation loss in slow light photonic crystal waveguidesSchulz, Sebastian Andreas January 2012 (has links)
The field of nanophotonics is a major research topic, as it offers potential solutions to important challenges, such as the creation of low power, high bandwidth interconnects or optical sensors. Within this field, resonant structures and slow light waveguides are used to improve device performance further. Photonic crystals are of particular interest, as they allow the fabrication of a wide variety of structures, including high Q-factor cavities and slow light waveguides. The high scattering loss of photonic crystal waveguides, caused by fabrication disorder, however, has so far proven to be the limiting factor for device applications. In this thesis, I present a detailed study of propagation loss in slow light photonic crystal waveguides. I examine the dependence of propagation loss on the group index, and on disorder, in more depth than previous work by other authors. I present a detailed study of the relative importance of different components of the propagation loss, as well as a calculation method for the average device properties. A new calculation method is introduced to study different device designs and to show that photonic crystal waveguide propagation loss can be reduced by device design alone. These “loss engineered” waveguides have been used to demonstrate the lowest loss photonic crystal based delay line (35 dB/ns) with further improvements being predicted (< 20 dB/ns). Novel fabrication techniques were investigated, with the aim of reducing fabrication disorder. Initial results showed the feasibility of a silicon anneal in a nitrogen atmosphere, however poor process control led to repeatability issues. The use of a slow-fast-slow light interface allowed for the fabrication of waveguides spanning multiple writefields of the electron-beam lithography tool, overcoming the problem of stitching errors. The slow-fast-slow light interfaces were combined with loss engineering waveguide designs, to achieve an order of magnitude reduction in the propagation loss compared to a W1 waveguide, with values as low as 130 dB/cm being achieved for a group index around 60.
|
105 |
Microresonators for organic semiconductor and fluidic lasersVasdekis, Andreas E. January 2007 (has links)
This thesis describes a number of studies of microstructured optical resonators, designed with the aim of enhancing the performance of organic semiconductor lasers and exploring potential applications. The methodology involves the micro-engineering of the photonic environment in order to modify the pathways of the emitted light and control the feedback mechanism. The research focuses on designing new organic microstructures using established semi-analytical and numerical methods, developing fabrication techniques using electron-beam lithography, and optically characterising the resulting structures. Control of the feedback mechanism in conjugated polymer lasers is first investigated by studying Distributed Feedback or photonic crystal resonators based on a square feedback lattice. This study identified the diffraction to free space radiation as a major source of loss in current microstructured resonator designs. By cancelling the coupling to free space through the use of different feedback symmetries and diffraction orders, a threshold reduction by almost an order of magnitude is demonstrated. The introduction of mid-gap defect photonic states in an otherwise uniformly periodic structure was studied in Distributed Bragg Reflector (DBR) resonators. This enabled GaN diode pumped polymer lasers to be demonstrated, indicating that the transition from complex excitation sources to more compact systems is possible. Devices for potential applications in the field of optical communications are also explored by demonstrating a polymer DBR laser based on silicon. In this way, the potential for integrating conjugated polymers with silicon photonics is confirmed. Photonic crystal fibres, which have a periodic microstructure in the transverse direction, are explored as an alternative means for controlling the optical properties of organic lasers. Fluidic fibre organic lasers were demonstrated as efficient sources with good spectral purity. In these devices, mechanisms to tune the emission wavelength were explored and the origin of the frequency selection mechanism was investigated.
|
106 |
Slotted photonic crystal biosensorsScullion, Mark Gerard January 2013 (has links)
Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them result in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This thesis presents a new platform for optical biosensors, namely slotted photonic crystals, which engender higher sensitivities due to their ability to confine, spatially and temporally, the peak of optical mode within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. High sensitivities were observed in smaller structures than most competing devices in the literature. Initial tests with cellular material for real applications was also performed, and shown to be of promise. In addition, groundwork to make an integrated device that includes the spectrometer function was also carried out showing that slotted photonic crystals themselves can be used for on-chip wavelength specific filtering and spectroscopy, whilst gas-free microvalves for automation were also developed. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study.
|
107 |
Theoretical investigation of photonic crystal and metal cladding for waveguides and lasersKrishnamurthy, Vivek 03 February 2009 (has links)
An efficient numerical analysis method for wavelength-scale and sub-wavelength-scale photonic structures is developed. It is applied
to metal-clad nano-lasers and photonic crystal-based DBRs to calculate intrinsic losses (from open boundaries), and to photonic crystal-based waveguides to calculate intrinsic and extrinsic losses (due to fabrication errors).
Our results show that a metal-clad surface plasmon-based laser in a cylindrical configuration requires more gain to lase than is available from a semiconductor gain region. However, the lowest order TE and HE guided modes exhibit less loss than the other modes, and hold the most promise for lasing. For photonic crystal-based structures, our matrix-free implementation of the planewave expansion method for calculating layer modes combined with
mode-matching between layers using a few lower order modes is shown to be a computationally efficient and reliable method. This method is then used to introduce robust design concepts for designing photonic crystal-based structures in the presence of fabrication uncertainties. Accounting for fabrication uncertainties is shown
to be particularly important in the regions of the device where the light exhibits very low group velocity (`slow light'). Finally, the modal discrimination properties of photonic crystal-based DBRs (Distributed Bragg Reflectors) are compared with the properties of conventional oxide-DBR combinations to analyze the contribution of out-of-plane diffraction losses
to modal discrimination.
|
108 |
Diodes laser tout cristal photonique émettant à 2,3 µm sur substrat GaSb / All photonic crystal laser diodes emitting at 2,3 µm on GaSb substrateAdelin, Brice 11 September 2015 (has links)
Les progrès récents des nanotechnologies permettent d'envisager de nouvelles générations de diodes laser. L'objectif de cette thèse est d'étudier l'apport des cristaux photoniques bidimensionnels pour explorer la faisabilité d'un réseau monolithique de diodes laser tout cristal photonique émettant au voisinage de 2,3 µm en filière GaSb. Chaque laser doit répondre à un certain nombre de critères : une émission monomode à une longueur d'onde stable et précise, une émission fine spectralement avec une puissance de sortie élevée, une longueur d'onde accordable, présentant aucun saut de mode sur la gamme d'accordabilité, un fonctionnement à température ambiante, sous pompage électrique et en régime continu. Ces critères répondent au cahier des charges de la technique de spectroscopie d'absorption à diodes laser accordables multiplexées (MTDLAS : Multiplexed Tunable Diode Laser Absorption Spectroscopy). La technique de MTDLAS est ici mise en œuvre pour les applications de détection de gaz dans le moyen infra-rouge (MIR), soit la gamme de longueur d'onde allant de 2 à 5 µm. Cette gamme de longueur d'onde présente plusieurs fenêtres de transparence (autour de 2,3 µm et de 3,4 à 4 µm) où l'absorption par la vapeur d'eau et le dioxyde de carbone est très faible. L'existence de ces fenêtres est mise à profit pour la détection de molécules gazeuses de l'atmosphère, telles que le monoxyde de carbone ou le méthane. Pour mes travaux de thèse, la longueur d'onde d'émission laser retenue est de 2,3 µm. Cette longueur d'onde correspond à la fenêtre de transparence pour la détection notamment du CH4, du CO et du HF. Ainsi, ce mémoire présente la conception de diodes laser tout cristal photonique, et le développement d'un procédé de fabrication de ces diodes lasers, qui a mené à la réalisation d'une série de composants. Nous montrons qu'une déformation de la maille photonique, associée à une optimisation de la largeur du guide, permet d'obtenir un fonctionnement monomode stable. Se basant sur ce principe, plusieurs géométries de mailles de cristaux photoniques ont été étudiées. Puis, nous nous attachons à lever le verrou technologique de la gravure profonde à fort rapport d'aspect dans les alliages AlGaAsSb. Pour cela, nous présentons des études paramétriques de gravure, conduisant à la mise au point d'un procédé optimisé de gravure profonde. Des profondeurs de gravure de 3,4 µm pour des trous de 370 nm de diamètre, soit un rapport d'aspect de plus de 9, ont ainsi pu être atteintes. Cette étape critique de gravure a été insérée dans un procédé technologique de fabrication de diodes laser tout cristal photonique, que nous avons mis au point. Cela a mené à la réalisation d'une série de composants. / Recent advances in nanotechnology allow considering new generations of laser diodes. The purpose of this thesis is to study the contribution of two-dimensional photonic crystals to design and fabricate a monolithic array of laser diodes emitting near 2.3 µm in GaSb system. Each laser in the array has to respond to stringent criteria : a stable and precisely predefined single-mode emission wavelength, high output power, tunable wavelength with no mode hopping over the tunability range. Moreover, such device should operate at room temperature, under electrical pumping and continuous regime. These criteria respond to the specifications of the technique of Multiplexed Tunable Diode Laser Absorption Spectroscopy (MTDLAS). The MTDLAS technique is here implemented for gas sensing applications in the Mid-wavelength infrared (MidIR), corresponding to the wavelength range from 2 to 5 microns. This wavelength range contains two transparency windows (around 2.3 µm and from 3.4 to 4 µm), where the absorption by water vapor and carbon dioxide is reduced. The existence of these windows is harnessed for the detection of gaseous molecules in the atmosphere, such as carbon monoxide or methane. For my thesis work, the chosen wavelength of laser emission is 2.3 µm. This wavelength corresponds to a transparency window allowing detection of CH4, CO and HF. This dissertation presents the design of all photonic crystal laser diode, and the development of a manufacturing process of such device, which led to the production of a set of components. We show that the engineering of the photonic lattice combined with an optimization of the width of the laser waveguide provide stable, single-mode emission operation. Based on this principle, several geometries for photonic crystal lattice were studied. Then we tackle the technological challenge of deep etching with high aspect ratio in AlGaAsSb alloys. For this, we present parametric studies of etching, leading to the development of an optimized process for deep etching. We succeed to etch holes of 370 nm diameter and 3.4 µm depths, corresponding at an aspect ratio in excess of 9. We have developed a technological manufacturing process of all photonic crystal laser diodes, where this critical etching step has been successful inserted. This led to the realization of a set of components.
|
109 |
Fabrication of Radially Symmetric Graded Porous Silicon using a Novel Cell DesignZhao, Mingrui, Keswani, Manish 22 April 2016 (has links)
A contactless method using a novel design of the experimental cell for formation of porous silicon with morphological gradient is reported. Fabricated porous silicon layers show a large distribution in porosity, pore size and depth along the radius of the samples. Symmetrical arrangements of morphology gradient were successfully formulated radially on porous films and the formation was attributed to decreasing current density radially inward on the silicon surface exposed to Triton (R) X-100 containing HF based etchant solution. Increasing the surfactant concentration increases the pore depth gradient but has a reverse effect on the pore size distribution. Interestingly, when dimethyl sulfoxide was used instead of Triton (R) X-100 in the etchant solution, no such morphological gradients were observed and a homogeneous porous film was formed.
|
110 |
Photonic crystals as functional mirrors for semiconductor lasersMoore, Stephen A. January 2008 (has links)
In recent years, interest has grown in the research fields of semiconductor lasers and photonic crystals. This thesis looks at integrating photonic crystals into existing semiconductor laser technology to act as functional laser mirrors. The majority of the research is conducted on a quantum-dot material system. The surface recombination velocity of a GaAs based quantum-dot material is shown to be a similar value to InP material. This allows the creation of fine photonic crystal structures in the laser design without high threshold current penalties. The spectral reflection properties of a one dimensional photonic crystal is studied and found to be an unsuitable candidate for a stand-alone laser mirror, due to its low reflectivity. A two-dimensional photonic crystal W3 defect waveguide is successfully integrated as a quantum-dot laser mirror. Single fundamental mode output is achieved with a typically multi-mode 20 μm wide laser mesa, highlighting the mode selective property of the mirror. A similar two-dimensional mirror is studied for its potential as a dispersion compensating mirror for mode-locked lasers. Initial theoretical analysis shows pulse compression for a suitably designed mirror. Experimental continuous- wave results for the same mirror structure demonstrate the tuning of mirror reflectivity with photonic crystal hole radius. A hybrid silicon-organic photonic crystal laser is demonstrated with output in the visible spectrum. This design is a new type of silicon emitter.
|
Page generated in 0.0921 seconds