• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 129
  • 23
  • 20
  • 15
  • 12
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 262
  • 262
  • 59
  • 43
  • 34
  • 31
  • 31
  • 30
  • 29
  • 26
  • 25
  • 25
  • 22
  • 21
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Design And Optimization Of Nano-optical Elements By Coupling Fabrication To Optical Behavior

Rumpf, Raymond 01 January 2006 (has links)
Photonic crystals and nanophotonics have received a great deal of attention over the last decade, largely due to improved numerical modeling and advances in fabrication technologies. To this day, fabrication and optical behavior remain decoupled during the design phase and numerous assumptions are made about "perfect" geometry. As research moves from theory to real devices, predicting device behavior based on realistic geometry becomes critical. In this dissertation, a set of numerical tools was developed to model micro and nano fabrication processes. They were combined with equally capable tools to model optical performance of the simulated structures. Using these tools, it was predicted and demonstrated that 3D nanostructures may be formed on a standard mask aligner. A space-variant photonic crystal filter was designed and optimized based on a simple fabrication method of etching holes through hetero-structured substrates. It was found that hole taper limited their optical performance and a method was developed to compensate. A method was developed to tune the spectral response of guided-mode resonance filters at the time of fabrication using models of etching and deposition. Autocloning was modeled and shown that it could be used to form extremely high aspect ratio structures to improve performance of form-birefringent devices. Finally, the numerical tools were applied to metallic photonic crystal devices.
172

Modeling And Design Of A Photonic Crystal Chip Hosting A Quantum Network Made Of Single Spins In Quantum Dots That Interact Via Single Photons

Seigneur, Hubert P. 01 January 2010 (has links)
In this dissertation, the prospect of a quantum technology based on a photonic crystal chip hosting a quantum network made of quantum dot spins interacting via single photons is investigated. The mathematical procedure to deal with the Liouville-Von Neumann equation, which describes the time-evolution of the density matrix, was derived for an arbitrary system, giving general equations. Using this theoretical groundwork, a numerical model was then developed to study the spatiotemporal dynamics of entanglement between various qubits produced in a controlled way over the entire quantum network. As a result, an efficient quantum interface was engineered allowing for storage qubits and traveling qubits to exchange information coherently while demonstrating little error and loss in the process; such interface is indispensable for the realization of a functional quantum network. Furthermore, a carefully orchestrated dynamic control over the propagation of the flying qubit showed high-efficiency capability for on-chip single-photon transfer. Using the optimized dispersion properties obtained quantum mechanically as design parameters, a possible physical structure for the photonic crystal chip was constructed using the Plane Wave Expansion and FiniteDifference Time-Domain numerical techniques, exhibiting almost identical transfer efficiencies in terms of normalized energy densities of the classical electromagnetic field. These promising results bring us one step closer to the physical realization of an integrated quantum technology combining both semiconductor quantum dots and subwavelength photonic structures.
173

GRADIENT MUTILAYERED FILMS AND CONFINED CRYSTALLIZATION OF POLYMER NANOLAYERS BY FORCED ASSEMBLY COEXTRUSION

Ponting, Michael T. 17 May 2010 (has links)
No description available.
174

Functionality via Confinement of Photo-Responsive Materials

Makowski, Brian Thomas January 2011 (has links)
No description available.
175

Mechanisms and Evolution of Iridescent Feather Colors in Birds

Eliason, Chad M. 11 September 2014 (has links)
No description available.
176

Design, Simulation and Physical Characterization of 3D Photonic Crystal Woodpile Structures for High Efficacy Incandescent Thermal Emission

SRIDHAR, SUPRIYA LALAPET 22 September 2008 (has links)
No description available.
177

Photonic Devices Fabricated with Photonic Area Lithographically Mapped Process

Zhou, Yaling 21 April 2009 (has links)
No description available.
178

Full-wave modeling and analysis of dispersion-engineered materials and plasmon waveguides

Jung, Kyung Young 11 September 2008 (has links)
No description available.
179

Ionizing Radiation Resistance of Random Hole Optical Fiber for Nuclear Instrumentation and Control Applications

Alfeeli, Bassam 03 June 2009 (has links)
Random hole optical fibers (RHOF) offer advantages over other types of microstructured optical fibers (MOFs). They are inexpensive and easy-to-make when compared to the high cost of ordered hole MOFs. They also have unique characteristics since they contain open and closed holes. The open holes contain ambient air under normal conditions and the closed holes contain residual gases from the fabrication process at certain pressure. The objective of this research work was to investigate the radiation resistance of Random Hole Optical Fibers (RHOF) for possible use as both sensing element and data transmission medium in nuclear reactor instrumentation and control applications. This work is motivated by the demand for efficient, cost effective, and safe operation of nuclear power plants, which accounts for more than 14% of the world's electricity production. This work has studied the effect of gamma irradiation on RHOF fibers by comparing their performance to that of standard solid telecommunication fibers and commercially available specialty solid fiber designed to be radiations hardened fiber. The fibers were evaluated at different absorbed dose levels: 12 mGy(Si), 350 mGy(Si), and 7200 Gy(Si) by measuring their radiation induced absorption (RIA) on-line. In the low dose test, the maximum RIA measured in untreated RHOF was approximately 8 dB while the RIA in the untreated MMF fibers reached a maximum at about 28 dB. In the high dose test, the maximum RIA measured in untreated RHOF was 36 dB while RIA in the methanol washed RHOF was only 9 dB. RHOF also demonstrated superior radiation damage recovery time over all of the other fibers tested. Based on the experimental evaluations, it was deduced that RHOFs used in this work are resistant to gamma radiation. and recover from radiation damage at a faster rate compared to other fibers tested. The radiation induced absorption (RIA) at the 1550 nm window in the RHOF fibers could be attributed to the OH absorption band tail. However, the existence of other mechanisms responsible for RIA is also postulated. Some of these mechanisms include bulk and surface defects which are related to the fabrication process and the influence of the gases confined within the RHOF microstructure. Gamma radiation resistance of RHOFs can be attributed to the lack of dopants and also possibly the inherent OH and nitrogen content. The behavior of thermally annealed RHOF and their fast recovery is in favor of this hypothesis. / Master of Science
180

Control of electromagnetic energy by metamaterials

Díaz Rubio, Ana 01 September 2015 (has links)
[EN] Metamaterials are periodic structures whose unit cells are small compared to the wavelength at the operating frequency. Under these conditions, these artificial materials can be considered as homogeneous media whose constitutive parameters depend on the characteristics of the unit cells. The discovery of metamaterials opened a new research field that has produced many works with microwaves, optical waves and acoustic waves. In this context, the main goal of this thesis is the study of new structures based on metamaterials that allow controlling of electromagnetic energy. In particular, new solutions for localization and absorption of electromagnetic waves are proposed. The thesis has been developed in the Wave Phenomena Group of the Polytechnic University of Valencia and in collaboration with the Group of Acoustic and Electromagnetic Metamaterials at the University of Exeter. The problems studied in the first part of this thesis are energy harvesting for subsequent absorption, wireless power transfer and new systems that can be used as position sensors. To solve these problems a new type of cylindrical, multilayer and anisotropic structures known as Radial Photonic Crystals are used. The radial dependence of the constitutive parameters generates, in these structures, a behavior like a one dimensional photonic crystals. Among the results obtained with these structures, it is included the first experimental demonstration of a Radial Photonic Crystals based resonator. Absorption of electromagnetic waves by thin layers of lossy materials is the second topic of this thesis. The main target is the theoretical and experimental study of the absorption enhancement in thin layers by using two-dimensional periodic structures, also called metasurfaces. Specifically, we studied the effects of a square lattice of coaxial cavities covered by a thin layer of lossy material. As a result, an enhancement of the absorption peaks that can produce total absorption is achieved. The semi-analytical study of this structure has allowed obtaining expressions that control the position of the absorption peak and its amplitude; which have helped to develop a design methodology for total absorption systems. / [ES] Los metamateriales son estructuras periódicas cuyas celdas unidad son muy pequeñas en comparación con la longitud de onda a la frecuencia de trabajo. Bajo estas condiciones, estos materiales artificiales pueden considerarse como medios homogéneos cuyos parámetros constitutivos dependen de las características de las celdas unidad que los componen. La aparición de los metamateriales abrió un nuevo campo de investigación que ha generado multitud de trabajos en las líneas de microondas, óptica y acústica. En este contexto, el objetivo principal de esta tesis es el estudio de nuevas estructuras basadas en metamateriales que permitan el control de la energía electromagnética. En particular, plantea nuevas soluciones para problemas de localización y absorción de ondas electromagnéticas. La tesis ha sido desarrollada en el Grupo de Fenómenos Ondulatorios de la Universidad Politécnica de Valencia y en colaboración con el Grupo de Metamateriales Acústicos y Electromagnéticos de la Universidad de Exeter. Los problemas estudiados en la primera parte de esta tesis son la concentración de energía para su posterior absorción, la transferencia inalámbrica de potencia y nuevos sistemas capaces de ser empleados como sensores de posición. Para la solución de estos problemas se emplean un nuevo tipo de estructuras cilíndricas, multicapa y anisótropas conocidas como Cristales Fotónicos Radiales. La dependencia radial de los parámetros constitutivos de los materiales que componen cada una de sus capas genera, en estas estructuras, un comportamiento similar al de los cristales fotónicos unidimensionales. Entre los resultados obtenidos con estas estructuras, cabe destacar la primera demostración experimental de un resonador basado en Cristales Fotónicos Radiales. La absorción de ondas electromagnéticas por capas delgadas de materiales con pérdidas es el segundo tema tratado en esta tesis. El objetivo principal es el estudio teórico y experimental del aumento de la absorción en capas delgadas mediante el uso de estructuras periódicas bidimensionales, también llamadas metasuperficies. En concreto, se han estudiado los efectos de una red cuadrada de cavidades coaxiales sobre la que se coloca una capa delgada de un material con pérdidas. Como resultado, se consigue un aumento de la absorción que permite obtener picos de absorción total. El estudio semianalítico de esta estructura ha permitido obtener expresiones que controlan la posición del pico de absorción y su amplitud; las cuales han permitido desarrollar una metodología de diseño para sistemas de absorción total. / [CA] Els metamateriales són estructures periòdiques en els que les cel·les unitat són molt xicotetes en comparació amb la longitud d'ona a la freqüència de treball. Tenint en consideració aquestes condicions, aquestos materials artificials poden considerar-se com a mitjans homogenis en els que els paràmetres constitutius depenen de les característiques de les cel·les unitat que els componen. A més, l'aparició dels metamateriales va obrir un nou camp d'investigació que ha generat multitud de treballs en les línies de microones, òptica i acústica. En aquest context, l'objectiu principal d'aquesta tesi és l'estudi de noves estructures basades en metamateriales que permeten el control de l'energia electromagnètica. En particular, planteja noves solucions per a problemes de localització i absorció d'ones electromagnètiques. La tesi ha sigut realitzada en el Grup de Fenòmens Ondulatoris de la Universitat Politècnica de València i en col·laboració amb el Grup de Metamateriales Acústics i Electromagnètics de la Universitat d'Exeter. Els problemes analitzats en la primera part de la tesi són la concentració d'energia per a la seua posterior absorció, la transferència inalàmbrica de potència i nous sistemes capaços de ser empleats com a sensors de posició. Per a la solució dels problemas identificats s'utilitza un nou tipus d'estructures cilíndriques, multicapa i anisòtropes conegudes com a Cristalls Fotónics Radials. La dependència radial dels paràmetres constitutius dels materials que componen cadascuna de les seues capes genera, en aquestes estructures, un comportament semblant al dels Cristalls Fotónics Unidimensionals. Entre els resultats obtinguts, cal destacar la primera demostració experimental d'un ressonador basat en Cristalls Fotónics Radials. Pel que respecta a la segon part de la tesi, l'absorció d'ones electromagnètiques per capes primes de materials amb pèrdues és tema tractat. L'objectiu principal és l'estudi teòric i experimental de l'augment de l'absorció en capes primes per mitjà de l'ús d'estructures periòdiques bidimensionals, també denominades metasuperficies. En concret, s'han examinat els efectes d'una xarxa quadrada de cavitats coaxials sobre la qual es col·loca una capa prima d'un material amb pèrdues. Com a resultat, s'aconseguix un augment de l'absorció que permet obtindre pics d'absorció total. Així mateix, l'estudi semi-analític d'aquesta estructura ha permés obtindre expressions que controlen la posició del pic d'absorció i la seua amplitud; les quals han permés desenvolupar una metodologia de disseny per a sistemes d'absorció total. / Díaz Rubio, A. (2015). Control of electromagnetic energy by metamaterials [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/54137

Page generated in 0.0721 seconds