Spelling suggestions: "subject:"photoreceptor."" "subject:"photoreceptors.""
1 |
Neuronal circuitry controlling circadian photoreception in DrosophilaLamba, Pallavi 29 August 2017 (has links)
Circadian clocks are endogenous timekeeping mechanisms, which give the sense of time-of-day to most organisms. To help the organisms to adapt to daily fluctuations in the environment, circadian clocks are reset by various environmental cues. Light is one of the cardinal environmental cues that synchronize circadian clocks.
In a standard 12:12 light-dark condition, Drosophila exhibits bimodal activity pattern in the anticipation of lights-on and -off. The morning peak of activity is generated by Pigment Dispersing Factor (PDF) positive small ventro-lateral neurons (sLNvs) called the M-oscillators, while the evening peak of activity is generated by the dorsolateral neurons (LNds) and the 5th sLNv together referred to as the E-oscillators. Since the Drosophila circadian clock is extremely sensitive to light, a brief light exposure can robustly shift the phase of circadian behavior. The model for this resetting posits that circadian photoreception is cell-autonomous: the photoreceptor CRYPTOCHROME (CRY) senses light, binds to TIMELESS (TIM) and promotes its degradation via JETLAG (JET). However, it was more recently proposed that interactions between circadian neurons are also required for phase resetting.
The goal of my thesis was to map the neuronal circuitry controlling circadian photoreception in Drosophila. In the first half of my dissertation (Chapter II), using a novel severe jetset mutant and JET RNAi, we identified M- and E-oscillators as critical light sensing neurons. We also found that JET functions cell-autonomously to promote TIM degradation in M- and E-oscillators, and non-autonomously in E-oscillators when expressed in M-oscillators. However, JET expression was required in both groups of neurons to phase-shift locomotor rhythms in response to light input. Thus M- and E-oscillators cooperate to shift circadian behavior in response to photic cues.
In chapter III, unexpectedly, we found that light can delay or advance circadian behavior even when the M- or E-oscillators are genetically ablated or incapacitated suggesting that behavioral phase shifts in response to light are largely a consequence of cell autonomous light detection by CRY and governed by the molecular properties of the pacemaker. Nevertheless, neural interactions are integral in modulating light responses. The M-oscillator neurotransmitter, PDF was important in coordinating M- and E-oscillators for circadian behavioral response to light input. Moreover, we uncover a potential role for a subset of Dorsal neurons in control of phase advances specifically. Hence, neural modulation of cell autonomous light detection contributes to plasticity of circadian behavior and facilitates its adaptation to environmental inputs.
|
2 |
Réponse à la lumière de l'horloge rétinienne : photorécepteurs et mécanismes moléculaires mis en jeu / Light entrainment of the retinal clocks : photoreceptors and molecular mechanisms involvedCalligaro, Hugo 06 April 2018 (has links)
La rétine contient une horloge endogène régulant différentes fonctions rythmiques et participe à la synchronisation de l'horloge centrale du SCN au temps géophysique. Cette synchronisation met en jeu les bâtonnets, les cônes et les cellules à melanopsine. Contrairement au SCN, le rôle des photorécepteurs dans la réponse à la lumière de l'horloge rétinienne est controversé. Nos travaux et ceux d'autres équipes soutiennent un rôle de la melanopsine alors que 2 études récentes suggèrent que seule la neuropsine est impliquée. Mon projet vise à disséquer le rôle des différents photorécepteurs par des approches in vitro/ex vivo chez des souris sauvages, Per2Luc et/ou déficientes en photorécepteurs. Des lumières monochromatiques ciblant différents photorécepteurs ont été appliquées à des explants rétiniens en culture de souris Per2Luc ou déficientes en melanopsine, cônes MW ou bâtonnets. Nos résultats montrent un rôle des bâtonnets dans le décalage de phase de l'horloge rétinienne par la lumière dans le spectre visible et une contribution additionnelle des cônes SW et/ou de la neuropsine dans l'UV. L'horloge rétinienne étant composée de plusieurs horloges et afin de déterminer leur réponse à la lumière, l'induction photique des gènes Per1-Per2 et C-Fos a été analysée dans les couches rétiniennes isolées chez des souris sauvages et déficientes en photorécepteurs. Chez les souris sans melanopsine ou cônes MW, l'induction de Per1-Per2 est abolie dans toutes les couches, suggérant un rôle de ces photorécepteurs. En résumé, nos résultats indiquent un rôle différentiel des photorécepteurs en fonction de la réponse mesurée (décalage de phase de PER2::Luc et induction des gènes de l'horloge par la lumière) / The mammalian retina contains an endogenous pacemaker regulating retinal physiology and participate to the sybchronization of the temporal phase of the central clock of the SCN to environmental time. This entrainment process involves rods, cones and melanopsin-containing retinal ganglion cells. In contrast with the SCN, the role of these photoreceptors in the light response of the retinal clock is still controversial. While recent studies suggest that none of them is involved in light response of the retinal clock, others support a role for melanopsin. My project aims to dissect the role of these different photoreceptors in wild-type, Per2Luc and/or photoreceptor-deficient mice using in vitro/ex vivo approaches. Monochromatic lights targeting different photoreceptors were applied to retinal explants of Per2Luc or melanopsin-, MW cones- or rods-deficient mice. Our results demonstrate that rods are required for the light-induced phase shift of the retinal clock in the visible spectrum and suggest an additional contribution of SW cones and/or neuropsin in the UV. As the retinal clock is composed of several clocks and in order to determine their response to light, the photic induction of Per1-Per2 and C-Fos genes was analyzed in isolated retinal layers from wild-type and photoreceptor-deficient mice. In mice without melanopsin or MW cones, Per1-Per2 induction by light is abolished in all layers, suggesting a role for these photoreceptors. In summary, our results propose a differential contribution of the retinal photoreceptors as a function of the response recorded (phase shift of PER2::Luc or induction of clock genes by light)
|
3 |
Ontogenia do sistema sensorial de pacu Piaractus mesopotamicus (Holmberg, 1887) (Characidae: Serrasalmidae)Clavijo-Ayala, John Alejandro [UNESP] 25 July 2008 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:22:23Z (GMT). No. of bitstreams: 0
Previous issue date: 2008-07-25Bitstream added on 2014-06-13T18:08:10Z : No. of bitstreams: 1
clavijoayala_ja_me_jabo_prot.pdf: 2110673 bytes, checksum: 81a603896afe42aa218b5fa3b86d612c (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O pacu Piaractus mesopotamicus é uma das espécies de maior relevância na piscicultura de águas quentes no Brasil, destacando-se pela qualidade de sua carne e desempenho em sistemas de cultivo. Apesar do avanço no estudo da biologia, anatomia e morfologia da espécie, os aspectos relacionados com o desenvolvimento inicial do sistema sensorial são praticamente desconhecidos. Este estudo teve por objetivo descrever o desenvolvimento inicial de pacu Piaractus mesopotamicus, com ênfase na ontogenia das estruturas sensoriais. Para isto, amostras seriadas de embriões e larvas em desenvolvimento foram coletadas desde as 9 horas pós fertilização (hpf) até os 25 dias pós eclosão (dpe), e destinadas para análises morfológicas, histológicas e de microscopia eletrônica de varredura. O desenvolvimento embrionário da espécie é rápido, e cerca das 19 hpf(a 26,S ± O,SOC), as larvas eclodem num estado altricial (3,19 ± 0,04 mm comprimento notocordal- CN; 0,477 ± 0,061 mm3 volume do saco+ vitelino¬VSV). Na eclosão, o desenvolvimento do sistema sensorial é limitado: no epitélio olfatório observam-se neurônios sensoriais ciliados e neurônios sensoriais com microvilosidades; a presença de mecanorreceptores é restrita ao neuromasto ótico imaturo; o desenvolvimento do ouvido interno é incipiente, observa-se a presença de dois otólitos em cada cápsula ótica, mas a larva ainda não apresenta estabilidade na coluna de água nem coordenação nos seus movimentos; e os olhos apresentam-se com pouco ou nenhum pigmento, lente diferenciada e separada da córnea, e retina não estratificada No entanto, o desenvolvimento pós-embrionário do sistema sensorial é acelerado: a partir de 1 dpe o epitélio olfativo se encontra coberto por uma densa camada de cilios não sensoriais que se distribuem. tanto na vesícula... / Pacu, Piaractus mesopotamicus, is one of the species of major importance for warmwater fish farming in Brazil due to its meat quality and performance in culture systems. Despite the advances in the study of biology, anatomy and morphology of the species, the aspects related to the early development of the sensorial system are unknown. The aim of this study was to describe the initial development of pacu Piaractus mesopotamicus, with emphasis on the ontogeny of the sensorial structures. Embryos and larvae were serially sampled during development, from the 9 hours after fertilization (haf) to the 25 days after hatching (dah), and subjected to the morphology, histology and scanning electron microscopy analysis. The embryonic development of the species is fast: about 19 haf (at 26,5 ± 0,5°C), larvae hatch in an altricial state (3.19 ± 0.04 mm notochordal length - NL; 0.477 ± 0.061 mm3 yolk-sac volume - YSV). At hatching, the sensorial system development is limited: in the olfactory epithelium, there are ciliated sensorial neurons and microvillous sensorial neurons; the mechanoreceptors are restricted to the immature otic neuromast; the development of the inner ear is incipient, with two otoliths in each otic capsule, but larvae do not show neither stability in the water column or coordination of their movements; the eyes have no or few pigment, with lens differentiated and separated from the cornea, and non-stratified retina. However, the post-embryonic development of the sensorial system is accelerated: from the 1 st dah the olfactory epithelium is covered by a dense layer of non sensorial cilia, which are distributed in the olfactory vesicle and in the epithelium region around it; at 2,5-3 dah, the eyes are totally pigmented; from the 4th dah it is possible to identify solitary chemosensorial cells in the post-otical region;...(Complete abstract click electronic access below)
|
4 |
Ontogenia do sistema sensorial de pacu Piaractus mesopotamicus (Holmberg, 1887) (Characidae: Serrasalmidae) /Clavijo-Ayala, John Alejandro. January 2008 (has links)
Orientadora: Maria Célia Portella / Banca: Irene Bastos Franceschini Vicentini / Banca: Marcos Antonio Cestarolli / Resumo: O pacu Piaractus mesopotamicus é uma das espécies de maior relevância na piscicultura de águas quentes no Brasil, destacando-se pela qualidade de sua carne e desempenho em sistemas de cultivo. Apesar do avanço no estudo da biologia, anatomia e morfologia da espécie, os aspectos relacionados com o desenvolvimento inicial do sistema sensorial são praticamente desconhecidos. Este estudo teve por objetivo descrever o desenvolvimento inicial de pacu Piaractus mesopotamicus, com ênfase na ontogenia das estruturas sensoriais. Para isto, amostras seriadas de embriões e larvas em desenvolvimento foram coletadas desde as 9 horas pós fertilização (hpf) até os 25 dias pós eclosão (dpe), e destinadas para análises morfológicas, histológicas e de microscopia eletrônica de varredura. O desenvolvimento embrionário da espécie é rápido, e cerca das 19 hpf(a 26,S ± O,SOC), as larvas eclodem num estado altricial (3,19 ± 0,04 mm comprimento notocordal- CN; 0,477 ± 0,061 mm3 volume do saco+ vitelino¬VSV). Na eclosão, o desenvolvimento do sistema sensorial é limitado: no epitélio olfatório observam-se neurônios sensoriais ciliados e neurônios sensoriais com microvilosidades; a presença de mecanorreceptores é restrita ao neuromasto ótico imaturo; o desenvolvimento do ouvido interno é incipiente, observa-se a presença de dois otólitos em cada cápsula ótica, mas a larva ainda não apresenta estabilidade na coluna de água nem coordenação nos seus movimentos; e os olhos apresentam-se com pouco ou nenhum pigmento, lente diferenciada e separada da córnea, e retina não estratificada No entanto, o desenvolvimento pós-embrionário do sistema sensorial é acelerado: a partir de 1 dpe o epitélio olfativo se encontra coberto por uma densa camada de cilios não sensoriais que se distribuem. tanto na vesícula...(Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Pacu, Piaractus mesopotamicus, is one of the species of major importance for warmwater fish farming in Brazil due to its meat quality and performance in culture systems. Despite the advances in the study of biology, anatomy and morphology of the species, the aspects related to the early development of the sensorial system are unknown. The aim of this study was to describe the initial development of pacu Piaractus mesopotamicus, with emphasis on the ontogeny of the sensorial structures. Embryos and larvae were serially sampled during development, from the 9 hours after fertilization (haf) to the 25 days after hatching (dah), and subjected to the morphology, histology and scanning electron microscopy analysis. The embryonic development of the species is fast: about 19 haf (at 26,5 ± 0,5°C), larvae hatch in an altricial state (3.19 ± 0.04 mm notochordal length - NL; 0.477 ± 0.061 mm3 yolk-sac volume - YSV). At hatching, the sensorial system development is limited: in the olfactory epithelium, there are ciliated sensorial neurons and microvillous sensorial neurons; the mechanoreceptors are restricted to the immature otic neuromast; the development of the inner ear is incipient, with two otoliths in each otic capsule, but larvae do not show neither stability in the water column or coordination of their movements; the eyes have no or few pigment, with lens differentiated and separated from the cornea, and non-stratified retina. However, the post-embryonic development of the sensorial system is accelerated: from the 1 st dah the olfactory epithelium is covered by a dense layer of non sensorial cilia, which are distributed in the olfactory vesicle and in the epithelium region around it; at 2,5-3 dah, the eyes are totally pigmented; from the 4th dah it is possible to identify solitary chemosensorial cells in the post-otical region;...(Complete abstract click electronic access below) / Mestre
|
5 |
spectral modulation of melanopsin responses : role of melanopsin bistability in pupillary light reflexTeikari, Petteri 02 March 2012 (has links) (PDF)
In addition to the canonical photoreceptors, rods and cones, a novelmelanopsin-expressing retinal ganglion cell (mRGC) was recently discovered.The novel photopigment melanopsin in the human retinahas been shown to express invertebrate-like bistable properties bothin vitro and in vivo. In bistable photopigment systems, light elicitsphotosensory responses and drives photoregeneration of the chromophoreto restore photic responsiveness. These studies have shownthat prior light exposure can modulate the amplitude of subsequentphotic responses of melanopsin.In this thesis, the putative bistability of melanopin in humans isexamined. The bistability was studied using 1) pupillary light reflex(PLR) as a tool, 2) developing a method for quantifying the effectsof lens density for melanopsin-mediated photoreception, and 3) providinga quantitative mathematical framework for modeling bistablepigment systems and non-image forming (NIF) visual system.Exploiting the bistable properties of melanopsin could allow foroptimization of spectral light distribution in experimental, industrial,domestic and clinical phototherapy applications by appropriate useof the photoregenerative effects of long wavelength light.
|
6 |
Characterisation of non-visual photoreception in humans / Caractérisation de la photoréception non-visuelle chez l'hommePrayag, Abhishek Sokappadu 26 July 2017 (has links)
Chez l'homme, la lumière influence 1) les rythmes circadiens, 2) le cycle veille-sommeil, et 3) active les fonctions non-visuelles. La rétine qui reçoit et traite l’information lumineuse possède des caractéristiques uniques de sensibilité à la lumière qui dépendent de la longueur d'onde. Elle se compose de photorécepteurs visuels (cônes S-, M-, ou L-) présentant une sensibilité au bleu, vert, et rouge et des photorécepteurs non-visuels (les cellules ganglionnaires à mélanopsine, ipRGCs) sensible à 480nm. Peu d'études ont étudié l'impact de lumières colorées sur les fonctions non-visuelles. De telles études ont utilisées des lumières monochromatiques de longue durée, administrées après les horaires normaux de coucher, avec une pupille dilatée. Cela contraste avec l'exposition à la lumière ambiante. Comment celle-ci influence la dynamique des réponses non-visuelles et est-ce que leur intensité ou leur composition de couleur influe sur les rythmes circadiens n'est toujours pas élucidée.Nous avons étudié les effets d’une lumière polychromatique sur les dynamiques de l'activité corticale (EEG), le réflexe pupillaire, la suppression de la mélatonine, la fréquence cardiaque, la température et les performances neurocomportementales. 28 sujets hommes ont été exposés à 4 stimuli lumineux de 50 min, entre 19-2300 h. Les stimuli avaient une contribution mélanopique différente, mais une densité de photons identique de 10e14 photons/cm²/s. Cela nous a permis de disséquer les contributions relatives des photorécepteurs non-visuels/visuels dans les fonctions non-visuelles. Dans une seconde étude, les photorécepteurs et niveaux de lumière nécessaires pour 1) initier et saturer la suppression de la mélatonine et 2) les plages actives ont été calculés. Ces résultats ont des implications dans notre compréhension des effets d’une exposition à la lumière artificielle sur la veille et le sommeil et les troubles du rythme circadien tels que le syndrome du retard de phase / In humans, light influences 1) circadian rhythms, 2) sleep-wake cycle, and 3)activate non-visual functions. While white bright light studies provide insight on the effect of light per se, the retina consists of visual photoreceptors (S-M-L cones) exhibiting sensitivity in blue, green, red colour range and non-visual photoreceptors (intrinsically photosensitive retinal ganglion cells, ipRGCs) most sensitive at 480nm. Few studies investigated the impact of coloured light corresponding to the different photoreceptors on light-dependent physiology. Such studies employed long duration monochromatic light, administered past normal bedtimes, after pupil dilator application. This contrasts with real-life light exposure. Furthermore, the link between light, non-visual responses and sleep-wake cycle has not been dynamically assessed. How ambient light influences the kinetics of non-visual responses and whether their intensity or colour impacts circadian rhythms is still unclear.We investigated polychromatic light exposure on the kinetics of cortical activity (EEG), pupillary light reflex, melatonin suppression, heart rate, temperature and neurobehavioral performances in humans. In a first study, 28 males were exposed to 4 light pulses of 50 min each from 19-2300 h. Light pulses had different melanopic contribution but identical photon density of 1014 photons/cm²/s. This allowed us to dissect relative contributions of non-visual/visual photoreceptors on light-dependent physiology and wakefulness markers. In a second study, we determined the sensitivity and thresholds of nocturnal melatonin suppression by light and the photoreceptors involved. Light levels needed to 1) initiate suppression, 2) saturation and 3) the active ranges were calculated. These findings have implications in our understanding of artificial light exposure on the sleep-wake cycle and circadian rhythm disorders such as delayed sleep phase disorder
|
7 |
Spectral modulation of melanopsin responses : role of melanopsin bistability in pupillary light reflex / Modulation spectrale des réponses mélanopsine : rôle de la bistabilité de la mélanopsine dans le réflexe photomoteurTeikari, Petteri 02 March 2012 (has links)
En plus des photorécepteurs canoniques traditionnels (bâtonnets etcônes), des cellules ganglionnaires contenant le photopigment mélanopsineont récemment été découverts. Une étude récente de notrelaboratoire a suggéré que, dans la rétine humaine, ce nouveau photopigmentexprime des propriétés bistables similaires à celles notéeschez les invertébrés tant in vitro qu’in vivo. Dans les systèmes dephotopigments bistables, la lumière déclenche une réponse photosensoriellemais permet aussi la régénération du chromophore pourrétablir la réactivité lumineuse du photopigment. Cette dernière étudea montré qu’une exposition lumineuse antérieure peut moduler l’amplitudedes réponses lumineuses de la mélanopsine.L’objectif de ma thèse est d’étudier (1) la bistabilité présumée de lamélanopsine chez l’Homme en utilisant comme outil le réflexe photomoteurpupillaire. Ma thèse comporte aussi 2) le développementd’une technique d’évaluation quantitative des effets du brunissementdu cristallin oculaire sur la photoréception impliquant la mélanopsine;3) le développement d’un modèle mathématique portant sur lefonctionnement des photopigments bistables et du système photiquenon visuel.L’exploitation des propriétés bistables de la mélanopsine et l’utilisationappropriée des effets photorégénérateurs des longueurs d’ondeslumineuses longues pourraient servir dans l’optimisation de la compositionspectrale des applications photothérapeutiques (expérimentales,industrielles, domestiques et cliniques). / In addition to the canonical photoreceptors, rods and cones, a novelmelanopsin-expressing retinal ganglion cell (mRGC) was recently discovered.The novel photopigment melanopsin in the human retinahas been shown to express invertebrate-like bistable properties bothin vitro and in vivo. In bistable photopigment systems, light elicitsphotosensory responses and drives photoregeneration of the chromophoreto restore photic responsiveness. These studies have shownthat prior light exposure can modulate the amplitude of subsequentphotic responses of melanopsin.In this thesis, the putative bistability of melanopin in humans isexamined. The bistability was studied using 1) pupillary light reflex(PLR) as a tool, 2) developing a method for quantifying the effectsof lens density for melanopsin-mediated photoreception, and 3) providinga quantitative mathematical framework for modeling bistablepigment systems and non-image forming (NIF) visual system.Exploiting the bistable properties of melanopsin could allow foroptimization of spectral light distribution in experimental, industrial,domestic and clinical phototherapy applications by appropriate useof the photoregenerative effects of long wavelength light. / Perinteisten fotoreseptorien, sauvasolujen ja tappisolujen, lisäksi verkkokalvoltaon löydetty melanopsiinia sisältäviä gangliosoluja. Fotopigmenttimelanopsiinin on huomattu käyttäytyvän ihmisen verkkokalvollaselkärangattomien eläimien bistabiilin näköjärjestelmän tavoinsekä in vivo- ja in vitro- olosuhteissa. Bistabiileissa fotopigmenttijärjestelmissävalo aiheuttaa sensoristen vasteiden lisäksi kromoforin fogeneraationvastevalmiisen tilaan. Nämä aiemmat tutki-mukset ovatosoittaneet, että aiempi valoaltistus voi moduloida siitä seuraaviamelanopsiinivasteita.Tässä väitöskirjassa melanopsiinin oletettua bistabiiliutta tutkittiinkäyttäen 1) Pupillireaktiota työkaluna, 2) kehittämällä kvantitaviinenmenetelmä mykiöntiheyden vaikutuksiin melanopsiini-fotoreseptiossa,ja 3) kehittäen kvantitatiivisen matemaattisen kehyksen bistabiilien pigmenttijärjestelmien ja ei-visuaalisen näköjärjestelmän mallintamiseen.Melanopsiinin bistabiileita ominaisuuksia on mahdollista optimoidavalon spektrikoostumusta niin tieteellisissä, teollisissa, kotitalouksellisissaja kliinisissä valoterapia sovelluksissa hyväksikäyttämälläpunaisen aallonpituusalueen fotoregeneroivia vaikutuksia.
|
8 |
The melanopsin-dependent direct non-circadian effects of light : a third principal mechanism for the regulation of sleep and wake / Effets directs non-circadiens de la lumière médiés par la mélanopsine : un troisième mécanisme majeur de régulation du sommeil et de l'éveilHubbard, Jeffrey 05 October 2012 (has links)
Entre 15 et 30% de la population souffrent de troubles du sommeil, ce qui représente un enjeu majeur de santé publique et souligne la nécessité de mieux comprendre les mécanismes de régulation du sommeil. La régulation du sommeil est décrite comme un modèle à 2-processus comprenant un mécanisme circadien et homéostatique. La lumière exerce un effet sur le sommeil de deux manières distinctes: indirectement en resynchronisant l'horloge, et directement par des mécanismes qui restent mal compris. Cet effet direct est médié par des cellules spécialisées de la rétine intrinsèquement photosensibles et contenant un photopigment la mélanopsine (Opn4) mais aussi par les cônes et bâtonnets qui transfèrent l'information à ces cellules. Pour comprendre la façon dont ces effets directs influencent le sommeil et la veille, nous avons caractérisé des souris Opn4-/- et des souris sans horloge fonctionnelle (Syn10cre/creBmal1fl/-), ainsi qu’un rongeur diurne, Arvicanthis ansorgei. Les objectifs de cette étude étaient les suivants: (1) identifier les voies neuronales sous-tendant les effets directs de la lumière médiés par la mélanopsine ; (2) valider ces effets chez un rongeur diurne; (3) établir une relation entre lumière, Opn4 et homéostasie du sommeil. Ce travail a permis (1) de mettre en évidence que les effets directs de la lumière représente un troisième mécanisme majeur de régulation du sommeil permettant même de maintenir un rythme veille sommeil en l’absence d’horloge centrale (2) de démontrer que ces effets sont inversés entre espèces diurnes et nocturnes; (3) de démontrer que la mélanopsine et la lumière sont fortement liées à la modulation de l’homéostasie du sommeil. / Between 15-30% of the general population is affected by sleep disorders, representing a major public health challenge, and as such a need to better understand the regulatory mechanisms of sleep and waking. This has been previously described as a 2-process model; both a circadian and homeostatic process. Light exerts an effect on sleep and wake in two distinct ways: indirectly, through the resynchronization of the clock, and directly via mechanisms that remain poorly understood. This direct effect is primarily a result of interaction with specialized cells in the retina which are intrinsically photosensitive containing the photopigment melanopsin (Opn4) in addition to rods and cones, which to a lesser extent pass information through these cells. To understand the way in which these direct effects influence sleep and waking we characterized mice lacking Opn4, and a second group possessing a functionally disabled clock (Syn10cre/creBmal1fl/-), as well as a diurnal rodent, arvicanthis ansorgei. The aims of this study were to: (1) identify the possible neural pathways to the hypothalamus transmitting the Opn4-mediated direct effects of light; (2) validate these effects in a diurnal rodent; (3) demonstrate a biological link between light, Opn4, and sleep homeostasis. This work has provided (1) strong evidence for a third regulatory mechanism of sleep and waking (direct effects of light) that is able to maintain a sleep wake rhythm in the absence of central clock (2) an inversion of this mechanism between nocturnal and diurnal species; (3) demonstration that Opn4 and light are strongly related to the modulation of homeostatic sleep process.
|
9 |
The light at the end of the tunnel: photosensitivity in developing mountain pine beetle (Dendroctonus ponderosae)Wertman, Debra 11 December 2017 (has links)
This research explores the capacity for functional photoreception in larvae of the
mountain pine beetle (Dendroctonus ponderosae), an extremely important forest pest
insect that is well adapted for development beneath the bark of pine trees. Phototaxis
tests, gene expression analysis and development experiments were integrated to assess
mountain pine beetle larvae for light sensitivity. When presented with a phototaxis
choice test, larvae preferred dark over light microhabitats, revealing that larvae sense and
respond behaviourally to light. Long wavelength opsin transcription was identified in all
life stages, including eggs and larvae, suggesting that D. ponderosae possesses
extraretinal photosensitive capabilities across its life cycle. The long wavelength opsin
could function in phototaxis or the development phenology of immature beetles, while
the ultraviolet opsin, only found to be expressed in pupae and adults, is likely to function
in dispersal via the compound eyes. Results from two development experiments reveal
an effect of photoperiod treatment on beetle development rate when reared from the egg
stage, but not when reared from mature larvae, indicating that a critical photosensitive
life stage(s) must occur in D. ponderosae prior to the third larval instar. An effect of
photoperiod on adult emergence rates, however, appears to be independent of larval
rearing conditions. The discovery of opsin expression and negative phototaxis in eyeless
mountain pine beetle larvae, in addition to an effect of photoperiod on immature
development and adult emergence rates, suggest that light and photoperiodism likely
function in survival and life cycle coordination in this species. / Graduate / 2018-10-17
|
10 |
Neuroethological studies on shark vision Assessing the role of visual biology in habitat use and behaviourLenore Litherland Unknown Date (has links)
Neuroethology and ecomorphology seek to understand ecology and behaviour from the perspective of specialised adaptations of sensory systems, such as vision. Sharks display a large variety of visual specialisations reflecting the diversity of different ecological niches they occupy. Many shark species are long-lived and wide ranging and often select different habitats for reproduction, growth, and feeding. Habitat complexity, ambient lighting conditions and feeding strategies can therefore change throughout a shark’s lifetime or between populations. Few comprehensive investigations of visual function exist for sharks as studies typically focus on a narrow aspect of visual function or a particular life history stage. Consequently, there is limited data on within-species plasticity of visual function in response to acclimation to different visual environments or ontogenetic development. The aim of this thesis is to undertake a functional analysis of the shark visual system. An integrated approach is employed to investigate optical, anatomical and physiological specialisations, linking such specialisations to known habitat and/or behavioural traits, with particular emphasis on ontogenetic, inter-population and inter-specific variability. Fundamental capabilities of the visual system are examined, including optical quality, eye morphology, spectral range, irradiance sensitivity, spatial and temporal resolution, contrast discrimination, and temporal and spatial summation. The main study species is the sandbar shark (<i>Carcharhinis plumbeus</i>; Carcharhinidae), a cosmopolitan species of ecological and economic importance. <i>C. plumbeus</i> occupies a wide range of natural habitats from highly turbid coastal estuaries, to relatively clear waters off the outer continental shelves and near pristine clear waters over the slopes of oceanic islands. This provides an opportunity to explore the relationship between habitat variability and the adaptation of visual specialisations and subsequent behaviour. For inter-specific comparison, the visual systems of two other species of shark with contrasting ecological niches are also assessed: the shortspine spurdog (<i>Squalus mitsukurii</i>; Squalidae) and the tiger shark (<i>Galeocerdo cuvier</i>; Carcharhinidae). The study finds marked differences in visual specialisations of the three species studied. The eyes of <i>S. mitsukurii</i> are adapted to enhance retinal illumination within a dim light environment with a large eye, immobile pupil, reflective tapetum and a relatively high optical sensitivity (2.72 μm<sup>2</sup> steradians). Visual features include a short wavelength lenticular filter, a high spatial resolving power (7.2 cycles/degree) and a large binocular overlap in the dorsal visual field, suggesting adaptations may facilitate the visualisation of bioluminescent prey. In contrast, the eyes of <i>C. plumbeus</i> are optimised for vision under variable light conditions with a mobile pupil and an occlusible tapetum. The sandbar shark shows an optical sensitivity of 1.11 μm<sup>2</sup> steradians. Visual resolution is highest in the lateral visual field, reaching a peak spatial resolution of 8.9 cycles/degree. An ERG derived spectral response curve for this species indicates maximal response to blue light between 460-490 nm. Interestingly, the tiger shark is maximally sensitive to a brighter range of light intensities compared to sandbar sharks, implying that tiger sharks occupy a more photopic light environment. However, sandbar sharks have a visual system with higher temporal resolution, as evaluated by the ERG response, (54 Hz) than tiger sharks (38 Hz). These results may reflect a difference in the importance of motion perception between <i>C. plumbeus</i> and <i>G. cuvier</i>. Phenotypic variability in visual function is shown between different populations of <i>C. plumbeus</i> occupying habitats with different ambient light conditions. This study provides new evidence of plasticity of visual function in response to acclimation to different visual environments within the same species. Sandbar sharks show an adaptive plasticity in visual sensitivity and temporal resolution, which appears to enable both temporal and population-specific adaptations to local light environments. In addition, the eyes of <i>C. plumbeus</i> and <i>S. mitsukurii</i> continue to grow even in adulthood. Visual performance, with respect to spatial resolving power and optical sensitivity, improve with eye growth. For example, peak spatial resolution increases with eye growth from 4.3 to 8.9 cycles/degree in <i>C. plumbeus</i> and from 5.7 to 7.2 cycles/degree in <i>S. mitsukurii</i>. These studies suggest that the light environment strongly influences visual function in this ancient class of vertebrates. Anthropogenically induced changes in water clarity may, therefore, impact on visually-mediated behaviours such as prey detection, agonistic signals or vertical migration. Anatomical and physiological parameters obtained from these studies provide a platform from which to model visual behaviours such as 1). Prey detection capabilities, 2). The impacts of water clarity on the limits of visually-mediated behaviour, and 3). The visual strategies that would allow sharks to maximise visual function, such as spatial and temporal summation under low light conditions. In conclusion, neuroethological studies can be a useful means to enrich information obtained from life-history and tagging studies and, together, can inform us of the functional role of sharks in marine ecosystems.
|
Page generated in 0.0998 seconds