• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

FUNCTIONAL CHARACTERIZATION OF TELEOST INTRINSIC PHOTOSENSITIVE DERMAL CHROMATOPHORES

Chen, Shyh-Chi 27 August 2013 (has links)
Mammalians process their photoreceptions through lateral eyes; however, non-mammalian vertebrates and invertebrates possess additional extraretinal photoreceptors over their bodies to detect light stimuli. Chromatophores, i.e. dermal specialized pigment cells, play important roles in the regulation of body patterns. Since chromatophores derive from neural crest, they share the common embryonic origin with retina. Recent evidence shows that they are light-sensitive due to opsin expression. In the present study, the expression of seven cone opsins was detected in tilapia caudal fin tissues. Moreover, distinct photoresponses were found in two chromatophore types. Regardless of stimulating wavelengths, melanophores tend to disperse and maintain cell shape at dispersion stage by shuttling pigment granules. Conversely, erythrophores respond to light in a wavelength-dependent manner. The opsin expression profiles of melanophores and erythrophores imply SWS1 and RH2 group genes may play important roles in chromatophore photoresponses. Through measuring photosensitivity, I suggest the two opsins play opposite roles in light-induced translocations of pigment granules within erythrophores: SWS1 for aggregations at UV and short wavelength regions and RH2b for dispersion in middle/long wavelengths. An antagonistic interaction occurs in the overlapping of the absorbance spectra of the two opsins. I also found that the photoresponses take place along with the occurrence of the change of cell membrane potential. In addition, the effect of different light backgrounds (broad spectrum, short wavelength-rich, and red-shifted light conditions) on the photosensitivity of tilapia erythrophores was investigated. I found that the major opsin classes (SWS1 and RH2b) responsible for photoresponses remain constant in three groups of erythrophores. Together, I postulate that melanophores may serve as a light filter in integumentary tissues, and the chromatically antagonistic mechanism enables tilapia erythrophores to sense the subtle change of environmental photic condition and to fine-tune pigmentation. I also investigated the ontogenetic change of photoresponses of rainbow trout melanophores. Distinct photoresponses were found in parrs and smolts. Furthermore, smolt melanophores responded to light in a wavelength-dependent manner. Since the change of coloration and visual system during smoltification of salmonids is regulated by thyroid hormone (TH), I suggest that the development of melanophore photosensitivity is associated to TH as well. / Thesis (Ph.D, Biology) -- Queen's University, 2013-08-27 09:57:22.907
2

FUNCTIONAL CHARACTERIZATION OF TELEOST INTRINSIC PHOTOSENSITIVE DERMAL CHROMATOPHORES

Chen, Shyh-Chi 27 August 2013 (has links)
Mammalians process their photoreceptions through lateral eyes; however, non-mammalian vertebrates and invertebrates possess additional extraretinal photoreceptors over their bodies to detect light stimuli. Chromatophores, i.e. dermal specialized pigment cells, play important roles in the regulation of body patterns. Since chromatophores derive from neural crest, they share the common embryonic origin with retina. Recent evidence shows that they are light-sensitive due to opsin expression. In the present study, the expression of seven cone opsins was detected in tilapia caudal fin tissues. Moreover, distinct photoresponses were found in two chromatophore types. Regardless of stimulating wavelengths, melanophores tend to disperse and maintain cell shape at dispersion stage by shuttling pigment granules. Conversely, erythrophores respond to light in a wavelength-dependent manner. The opsin expression profiles of melanophores and erythrophores imply SWS1 and RH2 group genes may play important roles in chromatophore photoresponses. Through measuring photosensitivity, I suggest the two opsins play opposite roles in light-induced translocations of pigment granules within erythrophores: SWS1 for aggregations at UV and short wavelength regions and RH2b for dispersion in middle/long wavelengths. An antagonistic interaction occurs in the overlapping of the absorbance spectra of the two opsins. I also found that the photoresponses take place along with the occurrence of the change of cell membrane potential. In addition, the effect of different light backgrounds (broad spectrum, short wavelength-rich, and red-shifted light conditions) on the photosensitivity of tilapia erythrophores was investigated. I found that the major opsin classes (SWS1 and RH2b) responsible for photoresponses remain constant in three groups of erythrophores. Together, I postulate that melanophores may serve as a light filter in integumentary tissues, and the chromatically antagonistic mechanism enables tilapia erythrophores to sense the subtle change of environmental photic condition and to fine-tune pigmentation. I also investigated the ontogenetic change of photoresponses of rainbow trout melanophores. Distinct photoresponses were found in parrs and smolts. Furthermore, smolt melanophores responded to light in a wavelength-dependent manner. Since the change of coloration and visual system during smoltification of salmonids is regulated by thyroid hormone (TH), I suggest that the development of melanophore photosensitivity is associated to TH as well. / Thesis (Ph.D, Biology) -- Queen's University, 2013-08-27 09:57:22.907
3

Hot Carriers in Graphene

Song, Justin Chien Wen 22 October 2014 (has links)
When energy relaxation between electrons and the lattice is slow, an elevated electronic temperature different from that of the lattice persists. In this regime, hot charge carriers control the energy transport in a material. In this thesis, I show how hot carriers can dominate graphene's response enabling it to exhibit novel properties. First, I examine how light is converted to electrical currents in graphene and show that hot carriers play an integral role in this multi-stage process. I show that photocurrent in graphene p-n junctions is dominated by a Photo-thermoelectric effect in which a light-induced elevated hot carrier temperature drives a thermoelectric current. Furthermore, I show that the generation and cooling of hot carriers in graphene during photoexcitation proceeds in an unusual way. In the former, carrier-carrier scattering dominates the initial photoexcitation cascade enabling efficient hot carrier generation. In the latter, a new cooling mechanism - disorder-assisted scattering (supercollisions) - dominates electron-lattice cooling over a wide range of temperatures (including room temperature). Second, I examine the transport characteristics of double layer graphene heterostructures (specifically, G/h-BN/G heterostructures). I show that Coulomb coupling results in vertical (out-of-plane) energy transfer between electrons in proximal (but electrically insulated) graphene layers. This couples lateral (in-plane) charge and energy transport of electrons in the two layers to give rise to a new energy-driven Coulomb drag (inter-layer transresistance) that dominates when the two layers are at charge neutrality. Third, I examine energy transport in charge neutral graphene. I show that the combination of fast carrier-carrier scattering, high electronic quality, and slow electron-lattice cooling (hot carriers) gives rise to a regime of ballistic heat transport. This manifest as electronic energy waves with velocity on the order of graphene's Fermi velocity. The new phenomena enabled by hot carriers and the ideas/approaches described in this thesis provide a basis with which to exploit hot carrier effects in graphene and opens new vistas for controlling and harnessing energy flows on the nanoscale. / Engineering and Applied Sciences
4

Modeling and characterization of polycrystalline mercuric iodide radiation detectors. [electronic resource] / by Unmesh Khadilkar.

Khadilkar, Unmesh. January 2003 (has links)
Title from PDF of title page. / Document formatted into pages; contains 64 pages. / Thesis (M.E.E.)--University of South Florida, 2003. / Includes bibliographical references. / Text (Electronic thesis) in PDF format. / ABSTRACT: The ability of Mercuric Iodide (HgI2) to function as a highly efficient radiation detector at room temperature has generated great interest and has triggered further studies on this difficult material. This property is expected to enable significant enhancements to a far-ranging variety of applications and systems. HgI2 devices have shown superior performance at room temperature compared to elemental Si or Ge devices, which require to be cooled down to liquid nitrogen temperature when used as nuclear radiation detectors. While substantial studies have been conducted on single crystal HgI2, polycrystalline HgI2 remains a comparatively less studied form of this material. The primary use of HgI2 is as a direct radiation detector. It can also be used in applications with a scintillator intermediate to generate visible light from incident nuclear radiation. Hence its response to visible light can be used to study the electronic properties of HgI2 polycrystalline films. / ABSTRACT: The films are deposited on TEC-15 LOF glass with a Tin Oxide(Sn02) coating which acts as the growth surface. It also acts as the front contact with Palladium (Pd) being the back contact. Wire leads are attached to the palladium for electrical contact. The deposited films are circular in shape with a diameter of 2.5cm with thickness ranging from 50 to 600ìm. A maximum of 7 devices are contacted at various points on every film. For the measurements documented in this thesis, a tungsten-halogen lamp and an Oriel 1/4m grating monochromator are used as a light source. The incident flux on the sample is determined using a Si photodiode as reference. Device performance for both single crystal as well as polycrystalline films is documented. We have attempted to identify a set of optimum growth parameters using these measurements. / ABSTRACT: For a film to be considered favorably, not only should the individual devices show high quantum efficiencies and low dark currents, but the response of all devices on the same film should be uniform. A number of films are studied and the optimum film deposition conditions are commented upon. A powerful semiconductor device simulation tool, MEDICItm, is used to simulate the photoresponse of these films. The simulations are compared to the measurements and the transport and light absorption parameters of the polycrystalline films are determined. / System requirements: World Wide Web browser and PDF reader. / Mode of access: World Wide Web.
5

Physical Properties Of Cdse Thin Films Produced By Thermal Evaporation And E-beam Techniques

Hus, Saban Mustafa 01 September 2006 (has links) (PDF)
CdSe thin films were deposited by thermal evaporation and e-beam evaporation techniques on to well cleaned glass substrates. Low dose of boron have been implanted on a group of samples. EDAX and X-ray patterns revealed that almost stoichiometric polycrystalline films have been deposited in (002) preferred orientation. An analysis of optical measurements revealed a sharp increase in absorption coefficient below 700 nm and existence of a direct allowed transition. The calculated band gap was around 1.7 eV. The room temperature conductivity values of the samples were found to be between 9.4 and 7.5x10-4 (&amp / #937 / -cm)-1 and 1.6x10-6 and 5.7x10-7 (&amp / #937 / -cm)-1for the thermally evaporated and e-beam evaporated samples respectively. After B implantation conductivity of these films increased 5 and 8 times respectively. Hall mobility measurements could be performed only on the thermally evaporated and B-implanted e-beam evaporated samples and found to be between 8.8 and 86.8 (cm2/V.s). The dominant conduction mechanism were determined to be thermionic emission above 250 K for all samples. Tunneling and v variable range hopping mechanisms have been observed between 150-240 K and 80- 140 K respectively. Photoconductivity &amp / #8211 / illumination intensity plots indicated two recombination centers dominating at the low and high regions of studied temperature range of 80-400 K. Photoresponse measurements have corrected optical band gap measurements by giving peak value at 1.72 eV.

Page generated in 0.0811 seconds