761 |
Influences of elevated atmospheric CO₂ and water stress on photosynthesis and fluorescence of loblolly pine, red maple, and sweetgumLenham, Philip J. 23 June 2009 (has links)
Changes in light harvesting ability and other physiological responses could int1uence the competitive outcomes of tree species in a future elevated CO₂ atmosphere. Photosynthetic light response curves were constructed with a closed photosynthesis system (LI-COR, Inc. Lincoln, NB) in order to investigate the effect of growth in elevated CO₂ (746 μl⁻¹) and ambient CO₂ (379 μl⁻¹) on light responses, and seedlings were allowed to dry out to examine physiological changes to water stress. While drying out, photosynthesis was measured with a closed system (LI-COR, Inc. Lincoln, NB) and fluorescence was measured with a portable fluorescence measurement system (P.K. Morgan Instruments, Inc Andover, MA). No species showed significant increases In quantum yields or decreases in light-compensation points as a result of elevated CO₂. Photosynthesis declined in all species due to water but seedlings grown in elevated C0₂ maintained photosynthesis longer. Loblolly pine and red maple grown in e1evated CO₂ showed signs of photosynthetic acclimation. Photochemical efficiency of PSII declined with water stress in loblolly pine. Red maple and sweetgum showed no relationship between photochemical efficiency of PSII and simulated drought. Growth in elevated C0₂ did not influence this response in loblolly pine, but sweetgum started with a lower photochemical efficiency or PSII which increased significantly. / Master of Science
|
762 |
Management intensity effects on growth and physiological responses of loblolly pine varieties and families growing in the Virginia Piedmont and North Carolina Coastal Plain of the United StatesYanez Arce, Marco Aliro 18 August 2014 (has links)
Varietal forestry may increase the productivity of loblolly pine (Pinus taeda L.) in the Southern United Sates. However, the effects of these genetic x environment interactions are still poorly understood. In this study we examined the responses in growth, stand uniformity and leaf level physiology of loblolly pine clonal varieties and families to silvicultural intensity and site effects. We also looked for patterns in observed traits that were consistent between crown ideotypes. Two varieties of each crown ideotype (narrow vs broad crowns) and two families (controlled mass pollinated (CMP) and open pollinated (OP) family) were tested on the Virginia Piedmont (VA) and the North Carolina Coastal Plain (NC) under different silvicultural intensities (operational vs intensive), and planting density (617, 1235 and 1852 trees per hectare). Data were collected during the first four growing season after establishment. At NC, intensive silviculture increased crown-width, height and dbh by 33%, 14%, and 23%, respectively. At VA, intensive silviculture increased crown-width, height and dbh by 41%, 10%, and 23%, respectively. Intensive silviculture also increased slightly but significantly the stand uniformity of stem growth. However, the differences in productivity between silvicultural treatments were not explained by differences in leaf-level physiology. Across all treatments and sites the varieties generally grew faster than the OP family, but the differences were higher at VA. Varieties did not differ in stem growth, but the broadest crown variety had greater stand uniformity, photosynthetic rate (Asat), carbon isotope discrimination (∆¹³) and lower fascicle size than the OP family. None of the traits assessed inthis study was consistent within the ideotypes. Varieties classified in the same crown-ideotypes may respond differently to the environmental effects of site and silviculture, which reinforces the need of matching varietal forestry with precision silviculture to achieve gains in productivity. / Ph. D.
|
763 |
Burkholderia phytofirmans strain PsJN effects on drought resistance, physiological responses and growth of switchgrassWang, Bingxue 09 February 2015 (has links)
To decrease dependency of fossil fuels and avoid direct competition with food crops, massive research efforts are investigating next-generation cellulose biofuel crops such as switchgrass (Panicum virgatum). A low-input, sustainable switchgrass production could be achieved by reducing traditional management practices though applying plant growth promoting rhizobacteria (PGPR), of which our understanding is still rather limited.
To elucidate physiological mechanisms behind PGPR's beneficial effects, we inoculated switchgrass seedlings with Burkholderia phytofirmans strain PsJN. Two experiments were conducted to determine the initial and long-term responses of switchgrass to PsJN inoculation by tracking growth and leaf physiology. In a third experiments, we tested the effects of PsJN on growth and leaf-level physiology of switchgrass under a moderate pre-drought conditioning and a successive severe drought stress.
PsJN inoculation increased biomass and promoted elongation of shoots within 17 days following inoculation. The enhanced root growth in PsJN inoculated plants lagged behind the shoot response, resulting in greater allocation to aboveground growth (p=0.0041). Lower specific root length (p=0.0158) and higher specific leaf weight (p=0.0029) were also observed in PsJN inoculated seedlings, indicating advanced development. Photosynthetic rates (Ps) were higher in PsJN inoculated seedlings after 17 days (54%, p=0.0016), which were related to higher stomatal conductance, greater water use efficiency, and lower non-stomatal limitation of Ps. These rapid changes in leaf physiology are at least partially responsible for switchgrass growth enhancement from PsJN treatment. The early growth enhancement in PsJN inoculated switchgrass linearly decreased with plant age. PsJN inoculation increased Ps of upper canopy leaves by 13.6% but reduced Ps of lower canopy leaves by 8.2%. Accelerated leaf senescence and early flowering were observed in PsJN-inoculated switchgrass, which might contribute to slightly lower aboveground biomass at final harvesting. Drought preconditioning increased Ps of PsJN-inoculated switchgrass during a later severe drought; whereas, control switchgrass only benefited from drought preconditioning when leaf water potential dropped below -1 MPa.
This study verified early growth enhancement and accelerated development of switchgrass due to PsJN inoculation. Rapid improvement in leaf physiology is related to enhanced productivity. PsJN inoculation also improve drought tolerance of switchgrass. / Ph. D.
|
764 |
Spectral, Electrochemical, and Photochemical Characterization of Donor-Acceptor Supramolecular SystemsLiyanage, Anuradha Vidyani 07 1900 (has links)
This dissertation research work focuses on the investigation of novel donor-acceptor systems elucidating their photochemical properties, anion binding, and their potential application in the development of artificial photosynthetic systems. The explored systems are based on oxoporphyrinogen (OxPs), porphyrins, fullerene, and boron dipyrromethene (BODIPY) based donor-acceptor systems. The photochemical properties of novel molecular systems were elucidated using UV-vis spectroscopy, fluorescence spectroscopy, electrochemical methods, computational calculations, and ultrafast transient absorption spectroscopy. A novel BODIPY-oxoporphyrinogen dyad which is able to bind with fluoride anion promoting the excited state ultrafast electron and energy transfer events mimicking the primary events in natural photosynthesis was introduced. Further, self-assembly of supramolecular complexes based on oxoporphyrinogens, fullerene, and different zinc porphyrin dimers was explored. The formed self-assembled complexes have shown photoinduced electron transfer. A novel push-pull supramolecular construct based on the spiro-locked N-heterocycle-fused zinc porphyrin was studied. The excited state charge separation and stabilization of this push-pull system was enhanced by the complexation with fluoride anion. Also, the effect of BODIPY functionalization and linkers on the electron transfer properties of a series of carbazole–BODIPY and phenothiazine-BODIPY dyads were investigated. These findings are important to develop advanced and efficient BODIPY-based donor-acceptor systems for efficient light harvesting applications. The entire study aims to expand our understanding of these systems and contribute towards the advancement of sustainable energy technologies.
|
765 |
Synthesis and Studies of Wide-Band Capturing BODIPY-Fullerene Based Donor-Acceptor SystemsShao, Shuai 05 1900 (has links)
Artificial photosynthesis is the process, which mimics the natural photosynthesis process in order to convert solar energy to chemical energy. This process can be separated into four parts, which are antenna system, reaction center, water oxidation center, and proton reduction center. If we only focus on the ‘antenna system and reaction center' modules, expanding the absorption band in antenna system and generating long-lived charge separated state in reaction center are two fantastic strategies to design the molecules in order to improve the efficiency of the artificial photosynthesis process.
In the first work of this dissertation, mono-18-crown-6 and mono-ammonium binding strategy was used to connect BODIPY- C60 supramolecular based donor–acceptor conjugates. The meso- position of BODIPY was modified by benzo-18-crown-6, and the 3, 5 methyl positions were replaced by two styryl groups, which covered additional donor (triphenylamine or 10-methylphenothiazine). The acceptor is a fulleropyrrolidine derivative, which included an ethyl ammonium cation. The absorbance wavelengths of the donor covered 300-850 nm, which is the visible/near IR region (wide band capturing). The ultrafast charge separation and relatively slow charge recombination was found from femtosecond transient absorption study.
Next, a ‘two point' bis-18-crown-6 and bis-ammonium binding strategy was utilized to link BODIPY- C60 supramolecular based donor–acceptor conjugates. In this case, the meso- position of the BODIPY was modified by a secondary donor (triphenylamine, phenothiazine, or ferrocene). And the 3, 5 methyl positions were replaced by two styryl groups, which included benzo-18-crown-6. The acceptor (fulleropyrrolidine) was functionalized by bis-alky ammonium cations. The absorbance/ fluorescence emission titration and computational studies supported that the ‘two-point' strategy has stronger binding than ‘one-point' strategy. The relatively slow charge separation was found in these donor-acceptor conjugates.
To extend the second work, a pristine BODIPY was linked to the meso- position of the BODIPY-bis-benzo-18-crown-6. When the acceptor (C60-bis- ammonium) was added to the system, a sequential energy transfer (EnT) followed by electron transfer (ET) process was performed. The energy transfer was found from absorbance/ fluorescence emission studies, and the photoinduced electron transfer was observed from femtosecond and nanosecond transient absorption study. This is a great mode to mimic the ‘antenna-reaction center' events of natural photosynthesis.
In the last work of this dissertation, triplet sensitizers (I2BODIPY and I2azaBODIPY) covalently linked with a C60 to form the donor-acceptor system. In this work, triplet charge separated state (long-lived charge separated state) was expected. According to the femtosecond transient absorption studies, we observed the singlet charge separation was faster than the intersystem crossing process, that was the reason that only singlet charge separated state was found for I2BODIPY-C60, and no electron transfer was found for I2 azaBODIPY-C60.
|
766 |
High-Energy, Long-Lived Charge-Separated States via Molecular Engineering of Triplet State Donor-Acceptor SystemsObondi, Christopher O 08 1900 (has links)
Molecular engineering of donor-acceptor dyads and multimodular systems to control the yield and lifetime of charge separation is one of the key goals of artificial photosynthesis for harvesting sustainably solar energy. The design of the donor-acceptor systems mimic a part of green plants and bacterial photosynthetic processes. The photochemical events in natural photosynthesis involve the capturing and funneling of solar energy by a group of well-organized chromophores referred to as an ‘antenna' system causing an electron transfer into the ‘reaction center,' where an electron transfer processes occur resulting a long-lived charge separated state. Over the last two to three decades, many efforts have been directed by the scientific community designing of multi-modular systems that are capable of capturing most of the useful sunlight and generating charge separated states of prolonged lifetimes with adequate amounts of energy.
In this dissertation, we report on the design and synthesis of donor–acceptor conjugates with the goal of modulating the yield and lifetime of their charge separated states and hence, improving the conversion of light energy into chemical potential. In simple donor-acceptor systems, generally, the energy and electron transfer events originate from the singlet excited state of the donor or acceptor and can store the greatest amount of energy but must be fast to out compete intersystem crossing. To address this limitation, we have designed novel donor –acceptor conjugates that use high-energy triplet sensitizers in which electron transfer is initiated from the long lived triplet state of the donor. The triplet photosensitizers used were palladium(II) porphyrin and platinum(II) porphyrin. Heavy metal effect in these porphyrins promoted intersystem crossing and the energies of their excited state was quite high. For the case of palladium (II) porphyrin the energy stored was found to 1.89 eV and that of platinum(II) porphyrin 1.84 eV.
In addition to using triplet photosensitizers as donors, we have used donors that are difficult to oxidize and hence producing long lived charge separated states with adequate amount of stored energy. The system that was used for this study is zinc porphyrin with meso-aryl pentafluorophenyl substituents and fullerene, C60 as the acceptor. The presence of fluorine substituents on zinc porphyrin makes it harder to undergo oxidation. When this high potential donor-acceptor system undergoes a photoinduced charge-separation, the estimated energy stored was found to be 1.70 eV, one of the highest reported in literature so far. To further extend the lifetime of the charge separated states generated in this high-potential zinc porphyrin-fullerene dyad a pyridine functionalized tetrathiafulvalene was axially coordinated to the Zn metal producing a supramolecular triad capable of producing long-lived charge separated state.
In a subsequent study, a multi-modular donor-acceptor system composed of a porphyrin, fullerene (C60) and a BF2-chelated dipyrromethene (BODIPY) with a supramolecular arrangement in the form of porphyrin-BODIPY-C60, one of the few reported in literature. By selectively exciting BODIPY and ZnP moieties, efficient singlet-singlet energy transfer from 1BODIPY * to ZnP in toluene was observed in the case of the dyad ZnP-BODIPY. However, when ZnP is excited, electron transfer occurred with the formation ZnP.+-BODIPY-C60.- charge separated state persisting for microseconds.
|
767 |
Fotosyntéza, produkce a růst rostlin při časově proměnné ozářenosti / Photosynthesis, production and growth of plants under temporal light hererogeneityKUBÁSEK, Jiří January 2014 (has links)
In this Ph.D. thesis I am dealing with the effect of dynamic irradiance on (i) photosynthesis, growth and bundle sheath leakiness (for CO2) of C4 plants and (ii) bryophyte photosynthesis. Part of this thesis is literature review on broader aspects of the dynamic light effects on photosynthetic and growth processes in plants.
|
768 |
Interactive Effects of Elevated CO2 and Salinity on Three Common Grass SpeciesMoxley, Donovan J. 14 August 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Carbon dioxide (CO2) level in the atmosphere has increased steadily since Pre-Industrial times. The need for a better understanding of the effects of elevated CO2 on plant physiology and growth is clear. Previous studies have focused on how plants are affected by either elevated CO2 or salinity, one of many environmental stresses for plants. However, little research has been focused on the interaction of these two factors. In my project, three common grass species were exposed to both elevated CO2 and salinity, so that the effects of either of these factors and the interaction of the two on these species could be examined. The CO2 levels were set to 400 µmol mol-1, close to the current concentration, or 760 µmol mol-1, projected to be reached by the end of this century. Salt solutions of 0, 25, 50, 75, and 100 mM NaCl with CaCl2 at lower rates (1% of each respective molarity for NaCl) were used to water the grasses, which are unlikely to experience prolonged exposure to salt conditions beyond this range in their natural habitats. The three common grass species studied in my experiment were Kentucky bluegrass (Poa pratensis L.) and red fescue (Festuca rubra L.), both C3 cool season grasses, as well as buffalo grass (Buchloe dactyloides (Nutt.) Engelm.), a C4 warm season
grass. Each treatment had five replicates, bringing the total number of experimental pots to 150. Various growth parameters were monitored, and all data was statistically analyzed for statistical significance. My results showed that elevated CO2 had a stimulating effect on most growth parameters, particularly when plants were given more time to grow. In a 100-day growth experiment, CO2 affected the number and dry biomass of plants of all species, regardless of their C3 or C¬4 photosynthetic pathways. Salinity consistently inhibited germination and growth at all stages, from germination through plant emergences, numbers of established plants, and dry biomasses at harvest. Interactive effects of CO2 and salinity did occur, though often in seemingly specific instances rather than forming clear and consistent trends. My findings suggested that growth of common grasses would be enhanced by the rising level of CO2 in the atmosphere, but the effect would be modified by environmental stresses, such as salinity.
|
769 |
Ferritin-Based Photo-Oxidation of Biomass for Nanoparticle Synthesis, Bioremediation, and Hydrogen EvolutionPetrucci, Oscar 01 December 2013 (has links) (PDF)
The cell is the basic unit of all living organisms. It is an amazing machine capable of self-replicating, growing, and synthesizing and shuttling thousands of compounds. To perform all of these activities the cell needs energy. The original source of energy for all living beings is the Sun. The energy of the sun is collected by the autotrophs (mostly plants) through photosynthesis and stored in the chemical bonds of carbohydrates and lipids through carboxylic acid intermediates; animals use these compounds to obtain the energy for their cells. Most of the energy extracted by the cell comes from the citric acid cycle. Therefore, two crucial energy transfer checkpoints are photosynthesis and citric acid cycle. With growing need for energy, the limited supply of fossil fuel, and the search for a cleaner environment, scientists have turned to the Sun (directly or indirectly through wind, tides, biomass, etc.) to satisfy the needs of modern society trying to reach the dual Holy Grail of energy: harvesting energy through Artificial Photosynthesis and Low Temperature Biomass Oxidation. This work represents one more step toward reaching these Holy Grails. The core reagent used in our technique is ferritin. Ferritin recapitulates some of the essential features of a plant cell: it contains a semiconductor capable of charge separation, like chlorophyll, acts as a membrane to isolate compartments, and has an enzymatic activity that prevents charge build up and oxidative damage. The energy absorbed by ferritin from the artificial “solar” radiation is used to extract reducing equivalents from stable and partially oxidized compounds, mainly carboxylic acids. The energized electrons produced are then used for a number of technical applications, from synthesis of catalytically active nanoparticles, to reductive precipitation of contaminant heavy metals (i.e.: mercury), to hydrogen evolution.
|
770 |
Carbon, nitrogen, and water fluxes from turfgrass ecosystemsLewis, Jason Douglas January 1900 (has links)
Doctor of Philosophy / Department of Horticulture, Forestry, and Recreation
Resources / Dale J. Bremer / Turfgrass covers 1.9% of the nation’s surface area and is the largest irrigated crop in the USA. Developed urbanized land is projected to double by 2025, which will increase turf’s environmental impact. Studies were conducted to evaluate environmental impacts by characterizing nitrogen, carbon, and water fluxes in turfgrass ecosystems.
Emissions of nitrous oxide (N[subscript]2O), a major greenhouse gas and ozone depleter were measured from bermudagrass (Cynodon dactylon L. Pers. x C. transvaalensis Burtt-Davy) (bermuda), perennial ryegrass, (Lolium perenne L.) (rye), and zoysiagrass, (Zoysia japonica Steud.) (zoysia) under regional N management. In a separate study, N2O fluxes were measured from bermuda fertilized with controlled-release N fertilizers including polymer-coated and organic-N, and quick release urea. Emissions of N2O were measured using static surface chambers and gas chromatography. Zoysia, with less N requirements, had lower emissions than bermuda. Cumulative N[subscript]2O emissions were similar among N types.
To measure water and carbon fluxes, a portable non-steady state chamber was designed and tested. The chamber had minimal affects to the canopy during field measurements: leak values averaged <1.5 micromol CO[subscript]2 m[superscript]-2 s[superscript]-1; average chamber pressure was 0.09 Pa ±0.01 Pa; temperature rise inside the chamber averaged 0.74C; and the chamber had 90% photosynthetically active radiation transmittance. Using the chamber, differences were detected in net photosynthesis (Pnet), gross photosynthesis (Pg), evapotranspiration (ET), canopy stomatal conductance (gc), and water use efficiency (WUE) in well-watered tall fescue (Festuca arundinacea Schreb.), Kentucky bluegrass (Poa pratensis L.) (KBG), zoysia, and bermuda.
Irrigation requirements, visual quality ratings, and genetic rooting potential of 28 KBG cultivars and 2 Texas bluegrass hybrids (P. pratensis x P. arachnifera Torr.) were quantified in greenhouse and rainout facility studies. Average water applied ranged from 23.4 to 40.0 cm among cultivars. Bedazzled, Preakness, and Bartitia required less water and had higher average quality than other cultivars. Compact America and Mid-Atlantic phenotypes exhibited greatest potential for success in integrating reduced water inputs with maintenance of acceptable visual quality. Results indicated that turfgrass management could mitigate N[subscript]2O emissions and conserve water while maintaining healthy turfgrass, and the new chamber will enhance turfgrass studies by providing rapid measurements of photosynthesis.
|
Page generated in 0.1026 seconds