• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hybrid solar district heating: combinations of high and low temperature solar technologies : A case study of Swedish DH system

Giorgio, Lucrezia January 2021 (has links)
In Sweden, the residential and industrial energy demand is provided by a significant part of district heating. In a decarbonization plan to reduce the CO2 emissions, the integration of a large-scale solar system in the district heating can be a suitable option. The most used types of collectors are flat plate collectors (FPC), for which efficiency drops at high temperature levels. Parabolic through collectors (PTC) have seen increased interest in later years, due to their higher efficiency at higher temperature levels, which could improve system performance both energetically and economically. A hybrid concept using a combination of FPC and PTC for a solar thermal system has previously been studied for a solar district heating system in Denmark, with the aim to maximize the solar production by operating the solar collectors in the temperature ranges where they excel. The first aim of this thesis was to adapt the hybrid solar system in a district heating system for a Swedish case study and to evaluate if the hybrid optimization studied has similar positive effects in the overall thermal production of the system in Sweden, as it did in Denmark. The second aim of this thesis was to investigate the use of photovoltaic thermal collectors (PVT) instead of FPC for parts of the solar thermal system. With PVT, a single solar collector module allows for simultaneous production of heat and electricity and integration of photovoltaic thermal collectors in the solar assisted district heating could improve the overall performance of the system, both in terms of energy production and economical gain.The study was performed using the simulation tool TRNSYS based on a model developed in a danish case study. It was performed a parametric analysis on the percentage of share of the different types of solar collectors in the total area. The results given from the simulations have been used to carry out an economic evaluation based on the levelized cost of substituted energy, the annual operation and maintenance costs, and the marginal operational cost difference between a conventional district heating system supplied by a boiler only and a solar assisted district heating system. Based on the results found, it has been proved that a greater proportion of parabolic trough collectors in the solar field contribute to a greater production of thermal energy but also to higher expenses in the economy of the project. The best configuration which balanced these two factors was composed by 70 % of flat plate collectors and 30 % of parabolic trough collectors, based on the total area. The integration of photovoltaic thermal has been demonstrated to be not cost-effective for the studied location compared to the optimized ratio of FPC to PTC, mainly due to the high and uncertain price of the new technology. The use of photovoltaic thermal system is not yet widely developed in projects and there are only a few existing projects in operation today. In the future, the development of photovoltaic thermal in solar assisted district heating projects might have a higher realizable economic potential due to the industry learning curve, but more studies will need to be performed on this.
2

Free cooling and PVT integration in a ground-source heat pump (GSHP) system

Pourier, Christopher January 2023 (has links)
The performance of ground-source heat pump (GSHP) systems can be negatively affected over time by soil temperature degradation of boreholes (BH) in heating dominated climates. Land area is scarce in the dense urban environments typical of multi-family houses (MFH) and can lead to accelerated degradation- in tight BH fields. Heat extracted from photovoltaic thermal collectors (PVT) can help with BH regeneration; thus, limiting degradation. Additionally, free cooling (FC) is proposed in this study to tackle the anticipated cooling demandi ncrease in Sweden, while resolving the listed challenges of GSHP systems. A novel multi-source (MS) system integrating FC, PVT and GSHP together shall be investigated in this study. Firstly, implementing FC in a GSHP system for the scenario considered only provided marginal regeneration of the BH in the longterm. Both the SPF4+ and total life cycle cost (TLCC) of an FC+GSHP and GSHPsystem remained virtually constant. Furthermore, operation interference of FC and PVT in the MS system can be mitigated by considering their relative location in the system. In this study, cooling is the priority, thus placing the FC system after the BH field but before the PVT system in the brine loop is recommended. In that case, only 0.56% of the annual cooling is not delivered due to FC operation interference and the PVT thermal yield is decreased on average by 3.52%. By decreasing the BH spacing from 15 to 5 m, a slight SPF4+ increase to 3.22 is possible in a system with FC and 48 PVT collectors. With a sensitivity analysis it was shown that if a 15% decrease is achieved in electricity prices then the TLCC of this system can be lower than the TLCC of 2.13 MSEK for a GSHP system. / Prestandan hos ytjordvärmepump (GSHP) kan påverkas negativt över tid av försämrad marktemperatur i borrhål (BH) i klimat som domineras av uppvärmning. I täta stadsmiljöer med flerfamiljshus (MFH) är markytan knapp, vilket kan leda till accelererad nedbrytning i trånga BH-fält. Värme som utvinns från solfångare (PVT) kan bidra till regenerering av BH, vilket begränsar nedbrytningen. Dessutom föreslås frikyla (FC) i denna studie för att hantera den förväntade ökningen av kylbehovet i Sverige, samtidigt som man löser de listade utmaningarna med GSHP-system. Ett nytt multikällsystem (MS) som integrerar FC, PVT och GSHP tillsammans ska undersökas i denna studie. För det första gav implementeringen av FC i ett GSHP-system för det aktuella scenariot endast marginell regenerering av BH på lång sikt. Både SPF4+ och den totala livscykelkostnaden (TLCC) för ett FC+GSHP och GSHP-system förblev praktiskt taget konstant. Dessutom kan driftstörningar från FC och PVT i MS-systemet minskas genom att ta hänsyn till deras relativa placering i systemet. I denna studie prioriteras kylning, och därför rekommenderas att FC-systemet placeras efter BH-fältet men före PVT-systemet i brineslingan. Endast 0.56% av den årliga kylningen levereras inte på grund av störningar i FC-driften och PVT:s värmeutbyte minskar i genomsnitt med 3.52%. Genom att minska BH-avståndet från 15 till 5 m är en liten ökning av SPF4+ till 3.22 möjlig i ett system med FC och 48 PVT-kollektorer. En känslighetsanalys visade att om elpriserna minskar med 15% kan TLCC för detta system bli lägre än TLCC på 2.13 MSEK för ett GSHP-system.
3

Performance Evaluation of a Photovoltaic/Thermal (PVT) Collector with Numerical Modelling

Ebrahim, Mila January 2021 (has links)
In Photovoltaic/Thermal (PVT) technology, both PV and solar thermal technology are integrated in the same module for simultaneous electricity and heat production. Research has shown that there are multiple benefits from integrating PVT collectors with a ground source heat pump (GSHP) system, since it allows for seasonal storage of thermal energy over the year. Furthermore, it leads to reduced operating temperatures for the PVT collectors which can increase efficiency and lifetime. The aim of this study is to present the electric and thermal performance of a PVT collector developed by Solhybrid i Småland AB, for different environmental and fluid inlet conditions that can occur when PVT collectors are connected to a GSHP system. Furthermore, the performance of this PVT design is evaluated with ASHRAE (Standard 93-2003), to allow for comparison with other PVT collector designs, with values on the overall heat loss coefficient (UL) and heat removal factor (FR). The modelling tool used for the study is the software COMSOL Multiphysics, which uses the finite element method to solve the partial differential equations in heat transfer and fluid flow problems. Based on the performance curves, the thermal and electrical efficiency of the collector is approximately 48.0-53.4% and 19.0-19.2% respectively at a reduced temperature of zero and irradiance levels of 800-1000 W/m2 for the mass flow rate of 0.026 kg/sm2 which was determined as most suitable to increase thermal performance. Furthermore, these results resulted in a heat removal factor (FR) and overall heat loss coefficient (UL) of 0.56-0.62 and 53.4-53.5 W/m2 K respectively. The results on the performance of the PVT collector in different weather conditions shows that the inlet water temperature can significantly affect operating time and the amount of thermal energy that can be extracted during the year, especially if the collector operates in a colder climate like Sweden. To assess the accuracy of the created model, future work includes experimental testing of the studied PVT collector. / En panel med kombinerad teknik av både solceller och termisk solfångare (PVT) kan producera både elektricitet och värme samtidigt. Forskning har visat att det kan finnas flera fördelar med att integrera PVT-paneler med ett bergvärmesystem, eftersom det mjliggör lagring av termisk energi över året. Dessutom leder ett sådant system till lägre drifttemperaturer som kan öka PVT-panelens effektivitet och livslängd. Syftet med studien är att presentera den elektriska och termiska prestandan av en PVT-panel utvecklat av Solhybrid i Småland AB för olika driftförhållanden som kan uppstå på grund av olika väderförhållanden och inlopps-temperaturer när panelerna är kopplade till ett bergvärmesystem. Vidare utvärderas prestandan för denna panel med ASHRAEmetoden (standard 93-2003), för att möjliggöra jämförelse med andra PVT-paneler. Modelleringsverktyget som använts i studien är mjukvaran COMSOL Multiphysics, som använder finita elementmetoden för att lösa partiella differentialekvationer i värmeöverförings-och flödesproblem. Baserat på prestandakurvorna som presenteras i resultatet, är den termiska och elektriska verkningsgraden approximativt 48.0-53.4% respektive 19.0-19.2% för en reducerad temperatur med värdet noll, en solstrålning mellan 800-1000 W/m2, för en massflödeshastighet på 0.026 kg/sm2 som beslutades som den mest lämpliga för att öka den termiska prestandan. Resultaten resulterade i en värmeavledningsfaktor (FR) och total värmeförlustkoefficient (UL) på 0.56-0.62 respektive 53.4-53.5 W/m2 K. Resultaten på PVT-panelens prestanda under olika väderförhållanden visar att vattnets inloppstemperatur kan påverka drifttiden och mängden termisk energi som kan extraheras under året avsevärt, speciellt i nordiskt klimat. För att bedöma korrektheten i resultaten och den skapade modellen rekommenderas experimentell testning av den studerade PVT-panelen.

Page generated in 0.5485 seconds