• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 791
  • 404
  • 212
  • 156
  • 98
  • 68
  • 26
  • 18
  • 14
  • 13
  • 12
  • 10
  • 8
  • 8
  • 8
  • Tagged with
  • 2110
  • 832
  • 713
  • 632
  • 404
  • 382
  • 369
  • 296
  • 274
  • 272
  • 218
  • 190
  • 186
  • 163
  • 161
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
401

Design of Multi-junction Solar Cells on Silicon Substrates Using a Porous Silicon Compliant Membrane

Wilkins, Matthew M. 30 April 2013 (has links)
A novel approach to the design of multi-junction solar cells on silicon substrates for 1-sun applications is described. Models for device simulation including porous silicon layers are presented. A silicon bottom subcell is formed by diffusion of dopants into a silicon wafer. The top of the wafer is porosified to create a compliant layer, and a III-V buffer layer is then grown epitaxially, followed by middle and top subcells. Due to the resistivity of the porous material, these designs are best suited to high efficiency 1-sun applications. Numerical simulations of a multi-junction solar cell incorporating a porous silicon compliant membrane indicate an efficiency of 30.7% under AM1.5G, 1-sun for low threading dislocation densities (TDD), decreasing to 23.7% for a TDD of 10^7 cm^-2.
402

Design and performance analysis of hybrid photovoltaic-thermal grid connected system for residential application.

Mutombo, Ntumba Marc-Alain. January 2012 (has links)
High output electrical energy is obtained from photovoltaic (PV) systems subject to high irradiance. However, at high irradiance, the efficiency of PV systems drops due to increase of the temperature of the systems. In order to improve the efficiency of photovoltaic systems, much effort has been spent on developing hybrid photovoltaic thermal (PVT) systems using water as a coolant to withdraw heat from solar modules. This research is focused on the study of the behavior of hybrid PVT collectors using rectangular channel profiles which provide a large surface for heat exchange between PV panels and thermal collectors unlike the circular channel profile used in conventional PV systems. In hybrid PVT systems, coolant water circulates in a closed circuit by means of the thermosyphon phenomenon and the heat from this water is extracted from a storage tank and can be used in hot water systems instead of an electric geyser. Numerical models of water velocity in channels due to the thermosyphon phenomenon and the temperature of solar modules was developed and a system was designed for modest Durban household demand. A simulation was run for specific summer and winter days comparing a conventional PV system and a hybrid PVT system. The results were very encouraging, and demonstrated that the equipment is capable of extending the PVT application potential in the domestic sector where more than 40% of electricity cost is heating water. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2012.
403

Automated Synthesis Tool for Design Optimization of Power Electronic Converters

Mirjafari, Mehran 02 October 2013 (has links)
Designers of power electronic converters usually face the challenge of having multiple performance indices that must be simultaneously optimized, such as maximizing efficiency while minimizing mass or maximizing reliability while minimizing cost. The experienced engineer applies his or her judgment to reduce the number of possible designs to a manageable number of feasible designs for which to prototype and test; thus, the optimality of this design-space reduction is directly dependent upon the experience, and expertise and biases of the designer. The practitioner is familiar with tradeoff analysis; however, simple tradeoff studies can become difficult or even intractable if multiple metrics are considered. Hence a scientific and systematic approach is needed. In this dissertation, a multi-objective optimization framework is presented as a design tool. Optimization of power electronic converters is certainly not a new subject. However, when limited to off-the-shelf components, the resulting system is really optimized only over the set of commercially available components, which may represent only a subset of the design space; the reachable space limited by available components and technologies. While this approach is suited to cost-reduce an existing design, it offers little insight into design possibilities for greenfield projects. Instead, this work uses the Technology Characterization Methods (TCM) to broaden the reachable design space by considering fundamental component attributes. The result is the specification for the components that create the optimal design rather than an evaluation of an apriori selected set of candidate components. A unique outcome of this approach is that new technology development vectors may emerge to develop optimized components for the optimized power converter. The approach presented in this work uses a mathematical descriptive language to abstract the characteristics and attributes of the components used in a power electronic converter in a way suitable for multi-objective and constrained optimization methods. This dissertation will use Technology Characterization Methods (TCM) to bridge the gap between high-level performance attributes and low-level design attributes where direct relationship between these two does not currently exist. The loss and size models for inductors, capacitors, IGBTs, MOSFETs and heat sinks will be used to form objective functions for the multi-objective optimization problem. A single phase IGBT-based inverter is optimized for efficiency and volume based on the component models derived using TCM. Comparing the obtained designs to a design, which can be made from commercial off-the-shelf components, shows that converter design can be optimized beyond what is possible from using only off-the-shelf components. A module-integrated photovoltaic inverter is also optimized for efficiency, volume and reliability. An actual converter is constructed using commercial off-the-shelf components. The converter design is chosen as close as possible to a point obtained by optimization. Experimental results show that the converter modeling is accurate. A new approach for evaluation of efficiency in photovoltaic converter is also proposed and the front-end portion of a photovoltaic converter is optimized for this efficiency, as well as reliability and volume.
404

A Novel Sensorless Support Vector Regression Based Multi-Stage Algorithm to Track the Maximum Power Point for Photovoltaic Systems

Ibrahim, Ahmad Osman January 2012 (has links)
Solar energy is the energy derived from the sun through the form of solar radiation. Solar powered electrical generation relies on photovoltaic (PV) systems and heat engines. These two technologies are widely used today to provide power to either standalone loads or for connection to the power system grid. Maximum power point tracking (MPPT) is an essential part of a PV system. This is needed in order to extract maximum power output from a PV array under varying atmospheric conditions to maximize the return on initial investments. As such, many MPPT methods have been developed and implemented including perturb and observe (P&O), incremental conductance (IC) and Neural Network (NN) based algorithms. Judging between these techniques is based on their speed of locating the maximum power point (MPP) of a PV array under given atmospheric conditions, besides the cost and complexity of implementing them. The P&O and IC algorithms have a low implementation complexity but their tracking speed is sluggish. NN based techniques are faster than P&O and IC. However, they may not provide the global optimal point since they are prone to multiple local minima. To overcome the demerits of the aforementioned methods, support vector regression (SVR) based strategies have been proposed for the estimation of solar irradiation (for MPPT). A significant advantage of SVR based strategies is that it can provide the global optimal point, unlike NN based methods. In the published literature of SVR based MPPT algorithms, however, researchers have assumed a constant temperature. The assumption is not plausible in practice as the temperature can vary significantly during the day. The temperature variation, in turn, can remarkably affect the effectiveness of the MPPT process; the inclusion of temperature measurements in the process will add to the cost and complexity of the overall PV system, and it will also reduce the reliability of the system. The main goal of this thesis is to present a novel sensorless SVR based multi-stage algorithm (MSA) for MPPT in PV systems. The proposed algorithm avoids outdoor irradiation and temperature sensors. The proposed MSA consists of three stages: The first stage estimates the initial values of irradiation and temperature; the second stage instantaneously estimates the irradiation with the assumption that the temperature is constant over one-hour time intervals; the third stage updates the estimated value of the temperature once every one hour. After estimating the irradiation and temperature, the voltage corresponding to the MPP is estimated, as well. Then, the reference PV voltage is given to the power electronics interface. The proposed strategy is robust to rapid changes in solar irradiation and load, and it is also insensitive to ambient temperature variations. Simulations studies in PSCAD/EMTDC and Matlab demonstrate the effectiveness of the proposed technique.
405

A Novel Buried-Emitter Photovoltaic Cell for High Efficiency Energy Conversion

Samadzadeh Tarighat, Roohollah January 2013 (has links)
To address the commonly poor short wavelength response of the conventional solar cell structure which consists of a highly doped thin emitter layer on top of a thicker and less doped base, the novel concept of the Buried-Windowed-Emitter is introduced. This new solar cell structure makes use of a high quality semiconductor layer on top of the traditionally made highly doped emitter and greatly enhances the spectral response of the solar cell by giving the superficially generated carriers a higher chance of collection at the junction. In the proposed BWE structure the emitter is windowed in order to electrically connect the top layer to the base for current collection. The efficacy of the proposed novel device is proven by computer aided device simulations using the available device simulation tools such as MEDICI. The results of simulation show that the proposed novel Buried-Windowed-Emitter solar cell will not only improve the short wavelength spectral response of the overall cell as expected, but also will boost the spectral efficiency for all the wavelengths. Another exciting conclusion from the results of the computer simulation of the BWE solar cell is that the minority carrier lifetime in the top layer does not need to be very high for a superb performance and values as low as 1µs can still boost the short circuit current of the cell to values close to the theoretical limit of the photo-current collectable by a silicon solar cell. This is indeed a good news for manufacturability of this device as it should be practically feasible to achieve epitaxial films with minority carrier lifetime in this range. In order to increase the understanding about the rather complex structure of the proposed Buried-Windowed-Emitter solar cell, an analytical circuit level model, similar to the case of the standard solar cell, is developed for the proposed device. The developed analytical model helps to understand the importance of the main design parameters such as the dimensions of the pattern of the windowed emitter. On the path to fabricate the proposed BWE solar cell, great deal of work is done on the development of a low temperature (<300°C) epitaxial silicon technology using the benefits of Plasma Enhanced Chemical Vapor Deposition (PECVD). Highly doped epitaxial silicon layers of up to around 1µm thickness are achieved with sheet resistivity as low as 7Ω/sq which is much lower than what is reposted in the literature in similar deposition conditions. Intrinsic, phosphorous doped n-type and boron doped p-type epitaxial films have been developed on silicon substrates. Measurement of reflection spectra of the deposited epitaxial films is proposed as a fast, non destructive and process-integrate-able method to assess the crystalline quality of the epitaxial films. Effects of higher temperature post deposition annealing have been studied on the develop epitaxial films A full technology is developed for the fabrication of the proposed novel solar cells. Photo-masks are designed to create 10 different architectures for the design of the windowed emitter in the BWE cell. All the steps taken in the successful fabrication of the novel BWE cells are presented in detail and the relevant findings are discussed and proposed as future research topics. Three kinds of cells are fabricated using the developed technology to separately study the effects of partial coverage of the windowed emitter, the optical performance of the developed epitaxial silicon films and the performance and manufacturability of the novel BWE solar cell The results show that the concept of windowed-emitter by itself (even without the top layer) is capable of enhancing the performance of the solar cell when compared to a standard design. It also promises high conversion efficiency for the BWE solar cell in case a high quality top layer can be deposited on top of the windowed emitter. The results further reveal the lower than expected quality of the low temperature epitaxial films despite the indication of their full crystallinity through other analyses. Use of the epitaxial films as the emitter of the solar cell is proposed as a direct and effective method of studying the photovoltaic performance of the low temperature epitaxial films. Further development of the epitaxial technology will lead to feasibility of a BWE solar cell with very high photovoltaic performance.
406

Polymer Nanocomposite Analysis and Optimization for Renewable Energy and Materials

Henry, Nathan Walter 01 December 2011 (has links)
Polymer nanocomposites are an important research interest in the area of engineering and functional materials, including the search for more environmentally materials for renewable energy and materials. The ability to analyze and optimize morphology is crucial to realizing their potential, since the distribution of materials in the composite strongly influences its properties. This dissertation presents research into three different polymer nanocomposite systems with three different applications that underscore the need to understand and control the composite morphology to succeed. The first project details work on development of a copolymer compatibilizer to enhance the dispersion of the plant-derived biopolymer lignin in composite blends with polystyrene. The copolymer was designed with hydroxyl functionality that can form hydrogen bonds with lignin, and the effect of modulating the density of these groups was investigated, both on bulk dispersion and interfacial mixing. The second project presented concerns resolving the interfacial morphology of composite bulk heterojunction organic photovoltaic devices based on a polythiophene-based photoactive polymer and a modified carbon fullerene, which are archetypical of the highest performing cells yet produced. Neutron reflectivity was extensively employed to probe the interfacial width and degree of intermixing between the components to elucidate the morphological impact on device performance. The final project involves modifying nanoscale cellulose crystallites, dubbed nanowhiskers, by replacing a portion of the hydroxyl groups with acetate groups to improve their dispersion in polymethyl methacrylate. Neutron reflectivity was again employed to probe the interface between the two materials to observe and quantify intermixing.
407

Laser crystallisation of silicon for photovoltaic applications using copper vapour lasers /

Boreland, Matt. January 1999 (has links)
Thesis (Ph. D.)--University of New South Wales, 1999. / Also available online.
408

The role of the Department of Defense (DoD) in solar energy research, development and diffusion

Benham, William T. Cabral, Noel J. January 2008 (has links) (PDF)
"Submitted in partial fulfillment of the requirements for the degree of Master of Business Administration from the Naval Postgraduate School, June 2008." / Advisor(s): Dew, Nicholas ; Ventresca, Marc. "June 2008." "MBA professional report"--Cover. Description based on title screen as viewed on August 7, 2008. Includes bibliographical references (p. 91-97). Also available in print.
409

Fabrication and analysis of patterned and planar CdTe-based solar cells

Rodríguez Chávez, Mario Arturo, January 2008 (has links)
Thesis (M.S.)--University of Texas at El Paso, 2008. / Title from title screen. Vita. CD-ROM. Includes bibliographical references. Also available online.
410

Quantum efficiency measurements of a-C:H based photovoltaic cells

Maldei, Michael. January 1997 (has links)
Thesis (M.S.)--Ohio University, March, 1997. / Title from PDF t.p.

Page generated in 0.0486 seconds