• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 791
  • 404
  • 212
  • 156
  • 98
  • 68
  • 26
  • 18
  • 14
  • 13
  • 12
  • 10
  • 8
  • 8
  • 8
  • Tagged with
  • 2110
  • 832
  • 713
  • 632
  • 404
  • 382
  • 369
  • 296
  • 274
  • 272
  • 218
  • 190
  • 186
  • 163
  • 161
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
441

Etude des propriétés électroniques de couches minces de CZTSSe / Study of electronics properties of thin films CZTSSe

Fillon, Raphaël 20 October 2016 (has links)
Ces travaux de thèse ont pour but d'étudier les propriétés électroniques de cellules photovoltaïques à base de couches minces de CZTSSe. L'objectif principal est d'identifier les défauts cristallographiques et de déterminer leur influence sur le fonctionnement des cellules solaires afin de mettre en oeuvre des stratégies de synthèse du CZTSSe pour le rendre compétitif par rapport aux autres matériaux en couches minces du photovoltaïque. La première phase du travail a consisté à élaborer le matériau et à l?intégrer dans une cellule solaire. Le CZTSSe est synthétisé par un procédé en deux étapes: le dépôt des précurseurs sous vide suivi d'un recuit sous atmosphère de sélénium. La deuxième phase du travail a concerné la caractérisation électrique des cellules sous obscurité. Pour cela des mesures de capacité en fonction de la tension et des mesures d'admittance sont effectuées en température. Les interprétations brutes des mesures sont menées en assimilant la cellule à une jonction n+p. Ce modèle s'avère insuffisant pour expliquer complètement les mesures expérimentales, ce qui nous a conduit, dans une troisième phase à une analyse plus détaillée. Pour cela, un calcul de l'admittance à partir des équations de base des semi-conducteurs a été développé. De cette manière, il est possible de sélectionner les contributions au signal qui sont incorporées au modèle. Initialement seule la contribution des défauts est intégrée. La prise en compte de fluctuations de potentiel améliore l'ajustement entre les données expérimentales et calculées. Toutefois une troisième composante doit être incluse pour rendre compte de la réponse diélectrique du CZTSSe. Cette composante à l'origine d'une variation en puissance de la conductivité avec la fréquence est caractéristique d'un mécanisme de hopping. L'incorporation de cette contribution dans la modélisation de l'admittance met en évidence que la conductivité dans le CZTSSe est due à un transport par états localisés, expliquant ainsi sa faible valeur. / This PhD work aims at studying the electronic properties of thin films CZTSSe solar cells. The final purpose is to identify crystallographic defects and determine their influence on the solar cells behavior in order to improve the efficiency and make CZTSSe competitive with other thin film technologies. The first part of the work deals with the fabrication of the CZTSSe thin films and solar cells. CZTSSe is synthetized using a two step process : vacuum deposition of precursors followed by an annealing under selenium atmosphere. The second part of the PhD work is the electrical characterization of the cells in the dark. Capacitance versus voltage measurements and admittance measurements are carried out at different temperatures. The results cannot be fully explained by usual models. As a consequence, further analysis has been conducted in a third part. Admittance has been calculated based on the classical equations that describe charge carriers in semi-conductor. The first interpretation only takes into account the contribution of defects. When the influence of potential fluctuations is added to the model, the adjustment between experimental measurements and calculated data is improved. However, a third component has to be included to fit the CZTSSe dielectric response. This component, causing a power variation of the conductivity with frequency is related to hopping mechanism. Adding this contribution to the admittance calculation allows to show that the CZTSSe conductivity is dominated by a localized states transport and can explain the low conductivity value.
442

Performance et durée de vie des architectures photovoltaïques organiques tandems / Performance and stability of tandem organic photovoltaic.

Schuchardt, Guillaume 24 January 2017 (has links)
Le photovoltaïque organique est une technologie pleine de promesses tant ses avantages sont nombreux : flexibilité, légèreté, conformabilité, faible coût de fabrication, etc. Seulement, les rendements modérés et la durée de vie limitée des dispositifs ralentissent encore son déploiement. L’une des stratégies envisagée à l’augmentation des rendements est l’utilisation d’une architecture tandem qui consiste en la superposition de deux sous-cellules ayant des spectres d’absorption complémentaires. Seulement, aucune étude n’a été faite sur la stabilité de ces dispositifs dans le temps. Ce travail de thèse a donc pour objectif de concevoir des cellules tandems à haut rendement et d’étudier leur durée de vie sous une illumination AM1.5G 1000 W/m².Dans un premier temps, un travail d’optimisation en cellule simple a permis d’atteindre des rendements compris entre 2,7% et 5,6% en moyenne. Ces dispositifs ont été ensuite intégrés en cellule tandem avec l’appui d’un outil de simulation optique permettant d’atteindre des rendements proches des 7% et affichant un gain de 1% en moyenne par rapport aux meilleures dispositifs simple jonction.L’étude de la stabilité a été ensuite faite suivant une approche systémique des propriétés optiques (UV-Visible), optoélectroniques (EQE et J(V)) et électroniques (Spectroscopie d’impédance et SKP) des dispositifs simple et double jonction et des matériaux seuls. Les diminutions de performances observées sont liées à une dégradation principalement causées par les molécules acceptrices utilisées. Une amélioration de la durée de vie des sous-cellules en architecture tandems a également été observée probablement due à un effet filtre.Enfin, une première étude de la spectroscopie d’impédance appliquée aux cellules tandems est présentée ; technique permettant potentiellement de suivre l’évolution de chaque sous-cellule indépendamment dans le temps.Mots-clés : cellule solaire photovoltaïque organique tandem, simulation optique, vieillissement, spectroscopie d’impédance, dimérisation, dégradation, PC71BM. / Organic photovoltaics is a promising technology with many advantages: flexibility, lightness, conformability, and low manufacturing costs. The only limiting factors to its commercialization are the moderate efficiency and the limited lifetime of the devices. One strategy that can increase its efficiency is the use of a tandem architecture which consists of a stack of two subcells with complementary absorption spectra. However, no study has been done on the stability of these devices. The objective of this thesis is to design high-performance tandem cells and study their stability under illumination AM1.5 1000 W/m². As a first step, the optimization of single cells allowed us to achieve efficiencies from 2.7% to 5.6% on average. These devices were then combined to form a tandem cell with the support of an optical simulation tool. This resulted in efficiency close to 7% and a gain of 1% on average compared to the best simple junction devices. A stability study was then carried out using a systemic approach to the optical (UV-Visible), optoelectronic (EQE and J (V)) and electronic (Impedance Spectroscopy and SKP) properties of single and double junction devices and of the materials themselves. Decreases in performance were observed, which are related to a degradation mainly caused by the acceptor molecules. Any prolongation in the lifetime of sub-cells in tandem architecture can be explained by a filter effect. Finally, a preliminary study of impedance spectroscopy applied to tandem cells is presented. This technique would allow us to follow the degradation of each sub-cell independently directly in the tandem architecture.Keywords : organic tandem solar cell, optical simulation, ageing, impedance spectroscopy, dimerization, degradation, PC71BM.
443

Building Applied Photovoltaic Array: Thermal Modeling and Fan Cooling

January 2010 (has links)
abstract: Thermal modeling and investigation into heat extraction methods for building-applied photovoltaic (BAPV) systems have become important for the industry in order to predict energy production and lower the cost per kilowatt-hour (kWh) of generating electricity from these types of systems. High operating temperatures have a direct impact on the performance of BAPV systems and can reduce power output by as much as 10 to 20%. The traditional method of minimizing the operating temperature of BAPV modules has been to include a suitable air gap for ventilation between the rooftop and the modules. There has been research done at Arizona State University (ASU) which investigates the optimum air gap spacing on sufficiently spaced (2-6 inch vertical; 2-inch lateral) modules of four columns. However, the thermal modeling of a large continuous array (with multiple modules of the same type and size and at the same air gap) had yet to be done at ASU prior to this project. In addition to the air gap effect analysis, the industry is exploring different ways of extracting the heat from PV modules including hybrid photovoltaic-thermal systems (PV/T). The goal of this project was to develop a thermal model for a small residential BAPV array consisting of 12 identical polycrystalline silicon modules at an air gap of 2.5 inches from the rooftop. The thermal model coefficients are empirically derived from a simulated field test setup at ASU and are presented in this thesis. Additionally, this project investigates the effects of cooling the array with a 40-Watt exhaust fan. The fan had negligible effect on power output or efficiency for this 2.5-inch air gap array, but provided slightly lower temperatures and better temperature uniformity across the array. / Dissertation/Thesis / M.S. Technology 2010
444

Desenvolvimento de metodologia e bancada para ensaio de exposição solar prolongada de módulos fotovoltaicos de filmes finos

Piccoli Junior, Luiz Antonio January 2015 (has links)
A geração de energia fotovoltaica continua em crescimento e por isso estudos relacionados à aplicação de diferentes tecnologias fotovoltaicas se tornam muito importantes. A tecnologia de células fotovoltaicas de silício cristalino representa a maior parte da aplicação de energia solar fotovoltaica atualmente. Os módulos com tecnologias de filmes finos foram apresentados ao mercado como uma nova geração de módulos e atualmente são referenciados como módulos fotovoltaicos de segunda geração. As tecnologias de filmes finos possuem algumas vantagens em relação ao silício cristalino, como por exemplo: menor quantidade de material, menor custo de produção e possibilidade de se produzir células e módulos flexíveis, embora em geral apresentem eficiências menores. Existem tecnologias de filmes finos aplicadas à geração fotovoltaica que apresentam instabilidade quando expostas à radiação solar, variando a potência gerada do módulo nas primeiras horas de exposição. Esses efeitos motivaram a padronização de um ensaio de exposição solar, do inglês light-soaking, que atualmente é previsto por uma norma internacional de qualificação de módulos fotovoltaicos (IEC 61646). Neste trabalho, desenvolveu-se uma metodologia para realizar o ensaio lightsoaking e construiu-se uma bancada de testes para obter resultados experimentais a partir de módulos expostos na cobertura do prédio anexo do LABSOL. Para isso, foi realizada uma análise de área livre de sombra disponível, bem como montada a estrutura metálica de sustentação para os módulos. Também foram instaladas resistências elétricas para dissipação de potência dos módulos e montado painel elétrico dentro do prédio centralizando as conexões necessárias. O experimento também contou com o desenvolvimento de um programa em linguagem Visual Basic® para interagir com os instrumentos de medição e realizar o monitoramento do ensaio. Neste trabalho foram ensaiados quatro módulos com diferentes tecnologias de filmes finos, as quais: silício amorfo com tripla junção, silício amorfo com uma junção, CIGS (Disseleneto de Cobre, Índio e Gálio) e por último dupla junção de silício amorfo com silício microcristalino. O experimento foi conduzido por 55 dias, sendo que a cada minuto o programa registrou dados de irradiância, irradiação acumulada e temperatura dos módulos. Ao final do experimento, os módulos receberam no total 347 kWh/m2 de irradiação e, durante o ensaio, foram realizadas ao todo 8 medições de curva característica corrente versus tensão para verificar o desempenho dos módulos. Antes e após a exposição, também foram realizadas medições em um simulador solar a fim de se obter medidas em condições controladas de temperatura e irradiância. Ao aplicar o critério de estabilização previsto na norma IEC 61646, verificou-se que todos os módulos o atenderam. Contudo, os módulos com tecnologia de uma junção de silício amorfo e com tecnologia de tripla junção de silício amorfo voltaram a apresentar degradação acima do máximo estabelecido pela norma IEC 61646 após continuarem expostos à radiação solar. Sendo assim, pode ser necessário alterar o critério para um maior valor de irradiação acumulada entre cada avaliação de degradação destes módulos, principalmente quando o ensaio é realizado com temperatura externa elevada. A metodologia mostrou que esse ensaio pode ser realizado em ambiente externo com luz natural de maneira prática e econômica, porém realizar as medições de curva característica com luz natural e temperatura não controlada implica em adicionar algumas incertezas ao ensaio. / The photovoltaic (PV) power generation continues to grow and so studies related to the application of different photovoltaic technologies become very important. The crystalline silicon solar cells technology is the most current application of PV power generation. The photovoltaic modules with thin film technologies were presented to the market as a new generation of modules and are currently referred to as second generation PV modules. The thin film technologies have some advantages compared to crystalline silicon, for example, less material, lower cost of production and ability to produce flexible cells and modules, although generally have lower efficiencies. There are thin film technologies for photovoltaic conversion that show instability when exposed to the sun, varying the power generated in the early hours of sun exposure. These effects led to the standardization of a sun exposure test, the light-soaking test, which is currently standardized by an international standard of qualification of photovoltaic modules (IEC 61646). In this study, we developed a methodology to perform the light-soaking test and built a workbench to obtain experimental results from PV modules set out in the LABSOL building. For this purpose, a shadow analysis was performed as well as the metal structure mounted to support the photovoltaic modules. Resistive loads were also installed in order to dissipate the power of the modules. An electrical panel was mounted inside the building to centralize the necessary connections. The workbench also included the development of a program in Visual Basic® to interact with the measuring instruments and carry out the monitoring of the experiment. In this work we tested four modules with different thin film technologies, including: triple junction amorphous silicon, single junction amorphous silicon, CIGS (Copper Indium Gallium Diselenide) and tandem junction of amorphous silicon and microcrystalline silicon. The experiment was conducted over 55 days, and every minute the program recorded irradiance data, accumulated irradiation and module temperature. At the end of the experiment, the modules received 347 kWh/m2 of irradiation. During the test, there were a total of 8 characteristic curve (I x V) measurements to verify the performance of the modules. Before and after exposure, were also performed measurements in a solar simulator. By applying the stabilization criteria presented in IEC 61646 it was found that all the modules have been considered stabilized. However, after being exposed to more hours of sunlight, the single junction amorphous silicon module and the triple junction amorphous silicon module presented degradation above the maximum established by IEC 61646 standard. Thus, it may be necessary to change the criteria for a higher value of accumulated irradiation between assessments of degradation of these modules, especially when the test is performed with high external temperature. The methodology showed that this test may be performed outdoors under natural light in a practical and economical way, but the characteristic curve measurements with natural light and uncontrolled temperature add some uncertainty to the test.
445

Desenvolvimento de um sistema para monitoramento remoto em centrais de microgeração fotovoltaica

Halmeman, Radames Juliano [UNESP] 05 May 2014 (has links) (PDF)
Made available in DSpace on 2014-08-13T14:51:01Z (GMT). No. of bitstreams: 0 Previous issue date: 2014-05-05Bitstream added on 2014-08-13T17:59:35Z : No. of bitstreams: 1 000776616.pdf: 4325824 bytes, checksum: 557feea50cbc02fd024a9a6c5abda8d8 (MD5) / Para avaliar o desempenho dos sistemas de microgeração é necessário coletar dados de produção e consumo de energia. Neste trabalho foi desenvolvido um sistema para monitoramento da produção e consumo de energia em centrais de microgeração fotovoltaicas. Os experimentos foram realizados na central de microgeração distribuída fotovoltaica (MGD-PV) do Sítio Modelo da Fazenda Lageado e no Laboratório de Energias Renováveis do Departamento de Engenharia Rural, na Faculdade de Ciências Agronômicas da UNESP, campus de Botucatu. O sistema utiliza dispositivos baseados em hardware livre para o gerenciamento e transmissão dos dados (Arduinos) e sensores de tensão e corrente para coleta de dados na central MGD-PV. A transmissão é feita via rede sem fios (ZigBee) para uma central de dados onde um microcomputador executa programas que foram desenvolvidos para o projeto e gerenciam o armazenamento local e envio dos dados para a Internet. Para monitorar o funcionamento e acessar os dados foi criada uma página na Internet. O download dos dados pode ser feito em formato CSV – Comma-Separated Values, amplamente utilizado e que permite a importação para diversas ferramentas de software. A eficiência do sistema foi de 96% na quantidade de dados registrados. / To evaluate the performance of microgeneration systems is necessary to collect data about production and consumption of energy. In this work, a system was developed for monitoring the production and consumption of energy in micro generation photovoltaic station. The experiments were performed in the central distributed micro generation photovoltaic - MGD-PV in Sítio Modelo in Campus Lageado and Renewable Energy Laboratory, Department of Rural Engineering in College of Agronomic Science (FCA) UNESP / Botucatu. To data collect the system uses voltage and current sensors and devices based on free hardware for managing and transmitting data (Arduinos). Data are transmitted via wireless (ZigBee) to a central database where one computer runs programs developed to store, manage and transmit the data to the Internet. To monitor the operation and access the data was created a page on the Internet. The downloaded data can be done in CSV - Comma-Separated Values, widely used and allows the import for several software tools. The system efficiency was 96% in the amount of recorded data.
446

Impact of Distributed Photovoltaic Generation and Customer Loads on Power Quality of a Distribution System

January 2014 (has links)
abstract: There has been a considerable growth in distributed photovoltaic (PV) genera-tion and its integration in electric power distribution systems. This has led to a change in the distribution system infrastructure. Properly planned distributed gen-eration can offer a variety of benefits for system operations and enhance opera-tional performance of the distribution system. However, high penetration of PV resources can give rise to operating conditions which do not arise in traditional systems and one of the potential issues that needs to be addressed involves impact on power quality of the system with respect to the spectral distortion in voltages and currents. The test bed feeder model representing a real operational distribution feeder is developed in OpenDSS and the feeder modeling takes into consideration the ob-jective of analysis and frequency of interest. Extensive metering infrastructure and measurements are utilized for validation of the model at harmonic frequencies. The harmonic study performed is divided into two sections: study of impact of non-linear loads on total harmonic voltage and current distortions and study of impact of PV resources on high frequency spectral distortion in voltages and cur-rents. The research work incorporates different harmonic study methodologies such as harmonic and high frequency power flow, and frequency scan study. The general conclusions are presented based on the simulation results and in addition, scope for future work is discussed. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2014
447

DC Optimizer for PV Module

January 2014 (has links)
abstract: As residential photovoltaic (PV) systems become more and more common and widespread, their system architectures are being developed to maximize power extraction while keeping the cost of associated electronics to a minimum. An architecture that has become popular in recent years is the "DC optimizer" architecture, wherein one DC-DC converter is connected to the output of each PV module. The DC optimizer architecture has the advantage of performing maximum power-point tracking (MPPT) at the module level, without the high cost of using an inverter on each module (the "microinverter" architecture). This work details the design of a proposed DC optimizer. The design incorporates a series-input parallel-output topology to implement MPPT at the sub-module level. This topology has some advantages over the more common series-output DC optimizer, including relaxed requirements for the system's inverter. An autonomous control scheme is proposed for the series-connected converters, so that no external control signals are needed for the system to operate, other than sunlight. The DC optimizer in this work is designed with an emphasis on efficiency, and to that end it uses GaN FETs and an active clamp technique to reduce switching and conduction losses. As with any parallel-output converter, phase interleaving is essential to minimize output RMS current losses. This work proposes a novel phase-locked loop (PLL) technique to achieve interleaving among the series-input converters. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2014
448

Characterization and Analysis of Long Term Field Aged Photovoltaic Modules and Encapsulant Materials

January 2015 (has links)
abstract: Photovoltaic (PV) module degradation is a well-known issue, however understanding the mechanistic pathways in which modules degrade is still a major task for the PV industry. In order to study the mechanisms responsible for PV module degradation, the effects of these degradation mechanisms must be quantitatively measured to determine the severity of each degradation mode. In this thesis multiple modules from three climate zones (Arizona, California and Colorado) were investigated for a single module glass/polymer construction (Siemens M55) to determine the degree to which they had degraded, and the main factors that contributed to that degradation. To explain the loss in power, various nondestructive and destructive techniques were used to indicate possible causes of loss in performance. This is a two-part thesis. Part 1 presents non-destructive test results and analysis and Part 2 presents destructive test results and analysis. / Dissertation/Thesis / Masters Thesis Engineering 2015
449

Climate-Specific Degradation Rate and Linearity Analysis of Photovoltaic Power Plants using Performance Ratio, Performance Index, and Raw kWh Methods

January 2016 (has links)
abstract: In the past 10 to 15 years, there has been a tremendous increase in the amount of photovoltaic (PV) modules being both manufactured and installed in the field. Power plants in the hundreds of megawatts are continuously being turned online as the world turns toward greener and sustainable energy. Due to this fact and to calculate LCOE (levelized cost of energy), it is understandably becoming more important to comprehend the behavior of these systems as a whole by calculating two key data: the rate at which modules are degrading in the field; the trend (linear or nonlinear) in which the degradation is occurring. As opposed to periodical in field intrusive current-voltage (I-V) measurements, non-intrusive measurements are preferable to obtain these two key data since owners do not want to lose money by turning their systems off, as well as safety and breach of installer warranty terms. In order to understand the degradation behavior of PV systems, there is a need for highly accurate performance modeling. In this thesis 39 commercial PV power plants from the hot-dry climate of Arizona are analyzed to develop an understanding on the rate and trend of degradation seen by crystalline silicon PV modules. A total of three degradation rates were calculated for each power plant based on three methods: Performance Ratio (PR), Performance Index (PI), and raw kilowatt-hour. These methods were validated from in field I-V measurements obtained by Arizona State University Photovoltaic Reliability Lab (ASU-PRL). With the use of highly accurate performance models, the generated degradation rates may be used by the system owners to claim a warranty from PV module manufactures or other responsible parties. / Dissertation/Thesis / Masters Thesis Engineering 2016
450

Decision-Making for Utility Scale Photovoltaic Systems: Probabilistic Risk Assessment Models for Corrosion of Structural Elements and a Material Selection Approach for Polymeric Components

January 2017 (has links)
abstract: The solar energy sector has been growing rapidly over the past decade. Growth in renewable electricity generation using photovoltaic (PV) systems is accompanied by an increased awareness of the fault conditions developing during the operational lifetime of these systems. While the annual energy losses caused by faults in PV systems could reach up to 18.9% of their total capacity, emerging technologies and models are driving for greater efficiency to assure the reliability of a product under its actual application. The objectives of this dissertation consist of (1) reviewing the state of the art and practice of prognostics and health management for the Direct Current (DC) side of photovoltaic systems; (2) assessing the corrosion of the driven posts supporting PV structures in utility scale plants; and (3) assessing the probabilistic risk associated with the failure of polymeric materials that are used in tracker and fixed tilt systems. As photovoltaic systems age under relatively harsh and changing environmental conditions, several potential fault conditions can develop during the operational lifetime including corrosion of supporting structures and failures of polymeric materials. The ability to accurately predict the remaining useful life of photovoltaic systems is critical for plants ‘continuous operation. This research contributes to the body of knowledge of PV systems reliability by: (1) developing a meta-model of the expected service life of mounting structures; (2) creating decision frameworks and tools to support practitioners in mitigating risks; (3) and supporting material selection for fielded and future photovoltaic systems. The newly developed frameworks were validated by a global solar company. / Dissertation/Thesis / Doctoral Dissertation Civil and Environmental Engineering 2017

Page generated in 0.076 seconds