91 |
Vliv pasivace povrchů Si na růst a uspořádávání nanostruktur / Influence of Si surface passivation on growth and ordering of nanostructuresMatvija, Peter January 2017 (has links)
Silicon is currently the most widely used semiconductor material with applications ranging from solar cells and sensors to electronic devices. Surface functionalization of silicon with molecular monolayers can be used to tune properties of the material toward a desired application. However, site-specific adsorption of molecules or molecular patterning on silicon surfaces is a difficult task due to the high reactivity of silicon. In this work, we use scanning tunneling microscopy, ab-initio calculations and kinetic Monte Carlo simulations to study adsorption of organic molecules on a bare and thallium-passivated Si(111) surface. We show that the polarity of molecules has a large impact on bonding of the molecules with the bare surface. We demonstrate that, in comparison with the bare surface, molecules or single-atom adsorbates deposited on the Tl-passivated surface have significantly higher mobility. The increased mobility induces formation of 2D gases on the surface and enables formation of self-assembled molecular structures. We propose a novel method to directly visualize the 2D surface gases and we show that a phase of surface gases containing molecule-bound dipoles can be controlled by a non-homogeneous electric field. 1
|
92 |
Elektrické transportní vlastnosti molekulárních materiálů pro pokročilé aplikace / Electrical transport properties of molecular materials for smart applicationsIvancová, Anna January 2012 (has links)
This master´s thesis deals with possibilities of application of new organic molecular materials for electronic devices. Nowadays it is a very attractive field of research, because of the tendencies in industry to miniaturize, reduce production costs and develop new, eco-friendlier, processes of production. The theoretical part of the thesis provides a short overview of organic materials suitable for smart applications and thin films issues including their characterization. The experimental part is dedicated to means how to prepare thin-film electronic components to silicon wafers for thin films field effect transistors. The obtained results in the last part of thesis are discussed about properties of prepared thin films, in the concrete about the electrical transport properties, in the connection with the condition of preparation.
|
93 |
Studium fotodynamické inaktivace prionů ftalocyaniny. / Study of the photodynamic inactivation of prions by phthalocyanines.Kostelanská, Marie January 2020 (has links)
Transmissive spongiform encephalopathies, also called prion disorders, are fatal neurodegenerative diseases affecting mammals. In patients, the pathological prion protein (PrPTSE ) accumulates in CNS and causes death. Prions possess high binding affinity to surfaces. Moreover, they are highly resistant to conventional sterilization procedures which rise the risk of nosocomial transmission from patients in subclinical stage of prion disease through medical tools. In the thesis, we evaluate the efficiency of photodynamic inactivation (PDI) for prion decontamination. The PDI is induced by photoactivation of phthalocyanine (Pc) derivates AlPcOH(SO3)2, SiPc(OH)2(SO3)1-3 or ZnPc(SO3)1-3. Pc exposed to light generate reactive oxygen species, mainly singlet oxygen (O2(1 ∆g)). Production of O2(1 ∆g) in aqueous solution was confirmed by iodide method, quenching by NaN3 and oxidative degradation of uric acid. The photoactivation of Pc in infectious brain homogenate led to elimination of PrPres signal (= proteinase K-resistant PrPTSE fragment) below the detection limit of western blot by using nanomolar AlPcOH(SO3)2 concentration. The complete elimination of PrPres signal was accompanied with total protein concentration decrease by a maximum of 20% in brain homogenate No signs of protein fragmentation or...
|
94 |
Coordination of Chemistry of Re(I) Carbonyl Complexes as Pharmaceutically Important Compounds and Synthesis, Characterization, and Metalation of Novel Phthalocyanine AnalogsCosta, Wijeendra M. R. S. 21 April 2011 (has links)
No description available.
|
95 |
Gas sensing mechanism study and crystal structure determination of phthalocyanine Langmuir-Blodgett filmsWang, Hong-Ying January 1995 (has links)
No description available.
|
96 |
Synthesis of Ligands and Macrocycles Based on 1,3-Diiminoisoindoline and Study of New Highly Fluorescent and Symmetric Pyrrole-BF<sub>2</sub> ChromophoresTamgho, Ingrid-Suzy January 2014 (has links)
No description available.
|
97 |
Studies of Alignment of Copper Phthalocyanine Compounds on Au(111) and Sidewall Functionalization of Single-Walled Carbon Nanotubes with Scanning Tunneling MicroscopyWei, Guoxiu 08 1900 (has links)
<p> This thesis consists of two projects: alignment of copper phthalocyanine compounds on Au(111) and sidewall functionalization of single-walled carbon nanotubes on graphite. Both of these projects are performed with scanning tunneling microscopy (STM), which is used to study the structure of modified surfaces that are of interest in molecular electronics.</p> <p> In the first project, copper phthalocyanine compounds are made into a thin film with different methods, such as solution deposition, self-assembly and Langmuir-Blodgett film deposition. Those films are important materials in photoelectric devices such as organic light emitting diodes (OLED's). Molecules in these films are aligned on the solid surface with face-on orientation or edge-on orientation. However, the films of molecules with face-on orientation are preferentially used in LED's. In this project, we focus on finding a method to force molecules with face-on orientation in the film. The structure of copper octakisalkylthiophthalocyanine films on Au(111) was investigated with STM under ambient conditions. Columns of molecules are commonly observed due to the π-π interaction between molecules. The presence and length of alkyl chains in the molecules affects the alignment of molecules on the gold surface. The weak interaction between molecules and substrate caused the structure to be easily modified by an STM tip.</p> <p> In addition, chemical sidewall functionalization of SWCNTs was also explored with STM under ambient conditions. It was found that the spatial distribution of functional groups on nanotube sidewall is not random. Understanding the rules behind the distribution of functional groups will allow scientists to better control carbon nanotube functionalization and improve the properties of nanotubes. High resolution STM images provide direct evidence of the distribution and the effects of functional groups on nanotubes. Possible mechanisms are proposed to elucidate the process of
SWCNT functionalization by free radicals and via the Bingel reaction.</p> / Thesis / Master of Science (MSc)
|
98 |
On the stability of a variety of organic photovoltaic devices by IPCE and in situ IPCE analyses – the ISOS-3 inter-laboratory collaborationTeran-Escobar, Gerardo, Tanenbaum, David M., Voroshazi, Eszter, Hermenau, Martin, Norrman, Kion, Lloyd, Matthew T., Galagan, Yulia, Zimmermann, Birger, Hösel, Markus, Dam, Henrik F., Jørgensen, Mikkel, Gevorgyan, Suren, Kudret, Suleyman, Maes, Wouter, Lutsen, Laurence, Vanderzande, Dirk, Würfel, Uli, Andriessen, Ronn, Rösch, Roland, Hoppe, Harald, Rivaton, Agnès, Uzunoğlu, Gülşah Y., Germack, David, Andreasen, Birgitta, Madsen, Morten V., Bundgaard, Eva, Krebs, Frederik C., Lira-Cantu, Monica 07 April 2014 (has links) (PDF)
This work is part of the inter-laboratory collaboration to study the stability of seven distinct sets of state-of-the-art organic photovoltaic (OPV) devices prepared by leading research laboratories. All devices have been shipped to and degraded at RISØ-DTU up to 1830 hours in accordance with established ISOS-3 protocols under defined illumination conditions. In this work, we apply the Incident Photon-to-Electron Conversion Efficiency (IPCE) and the in situ IPCE techniques to determine the relation between solar cell performance and solar cell stability. Different ageing conditions were considered: accelerated full sun simulation, low level indoor fluorescent lighting and dark storage. The devices were also monitored under conditions of ambient and inert (N2) atmospheres, which allows for the identification of the solar cell materials more susceptible to degradation by ambient air (oxygen and moisture). The different OPVs configurations permitted the study of the intrinsic stability of the devices depending on: two different ITO-replacement alternatives, two different hole extraction layers (PEDOT:PSS and MoO3), and two different P3HT-based polymers. The response of un-encapsulated devices to ambient atmosphere offered insight into the importance of moisture in solar cell performance. Our results demonstrate that the IPCE and the in situ IPCE techniques are valuable analytical methods to understand device degradation and solar cell lifetime. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
99 |
Couplage des procédés membranaires aux techniques physico-chimiques ou biologiques pour le traitement des rejets liquides de l'industrie de textile / Membrane process combined with physico-chemical or biological processes for textile wastewater treatmentHarrlekas, Farida 09 February 2008 (has links)
Le traitement des rejets textiles se fait habituellement via une filière physico-chimique couplée à un traitement biologique. La qualité de l’effluent obtenu obéit difficilement aux normes de recyclage ou de rejet dans le milieu naturel. Dans cet objectif, différentes combinaisons sont proposées: la coagulation floculation (CF) et/ou l’adsorption sur charbon actif (CAP) en poudre couplée aux techniques membranaires (microfiltration (MF) ou ultrafiltration (UF)), la photocatalyse couplée à un traitement aérobie biologique (système membranaire (BRM) ou réacteur discontinu séquentiel (RDS)) ou au traitement anaérobie par voie biologique ou chimique. Une comparaison générale a été réalisée pour optimiser le traitement adéquat. La combinaison CF-CAP-UF est un traitement efficace pour la réduction de la DCO, de la couleur et de la turbidité. La dégradation de deux colorants textiles (azoïque et phthalocyanine) a été étudiée par photocatalyse simple ou combinée à un BRM. Le traitement photocatalytique a été réalisé en présence de dioxyde de titane fixé sur un support en fibres de cellulose dans un réacteur à film tombant en présence d’irradiation UV. Pour les deux types de réacteurs biologiques, bien que la biomasse ait été influencée par la variation de la concentration en colorant et par le mode de fonctionnement continu pour le BRM, elle a pu résister. Après le pré-traitement nous avons obtenu une complète décoloration mais les sous produits photocatalytiques demeurent toxiques et peuvent empêcher l’abattement de la DCO. Dans une dernière partie, nous avons testé le couplage de la photocatalyse à un traitement chimique par hydrogénation catalytique ou biologique par boues granulaires. Cette dernière possibilité s’avère être efficace puisque des taux de décoloration supérieurs à 90% ont été atteints pour différents types de colorants et qu’aucune toxicité des produits obtenus lors du pré-traitement photocatalytique n’a été détectée / The treatment of textile wastewater is usually done by a set of physicochemical processes coupled with a biological treatment. The effluent quality abides with difficulty the norms for reuse or discharge in environment. Various treatment combinations have been tested such as coagulation-flocculation (CF) and adsorption on activated carbon (PAC) coupled with membrane technologies (microfiltration (MF) or ultrafiltration (UF)), photocatalysis coupled with a biological treatment (membrane bioreactor (MBR) or a sequential batch reactor (SBR) or a biological and chemical anaerobic treatment. A general comparison was made to optimise the appropriate treatment. The combination CF-PAC-UF is the most effective of non-biological systems in terms of COD, absorbance and turbidity removal. The degradation of an azoïc and a phthalocyanine textile dyes by simple photocatalysis or combined to a membrane bioreactor has been investigated. Photocatalysis was achieved in a falling film reactor containing titanium dioxide fixed on cellulose fibres under UV irradiation. For both biological systems, although biomass was influenced by the variation of dyes concentration and the continuous operating mode for the MBR, it could resist to the applied conditions. However, even after pre-treatment where full decolouration was achieved, photocatalytic by-products were toxic and could inhibit COD removal. Chemical and biological anaerobic treatment have been applied to textile dyes and combined with a photocatalytic process. Photocatalysis was able to remove more than 90% color from crude as well as autoxidized reduced dye solutions. The photocatalytic end-products were not toxic toward methanogenic bacteria
|
100 |
On the stability of a variety of organic photovoltaic devices by IPCE and in situ IPCE analyses – the ISOS-3 inter-laboratory collaborationTeran-Escobar, Gerardo, Tanenbaum, David M., Voroshazi, Eszter, Hermenau, Martin, Norrman, Kion, Lloyd, Matthew T., Galagan, Yulia, Zimmermann, Birger, Hösel, Markus, Dam, Henrik F., Jørgensen, Mikkel, Gevorgyan, Suren, Kudret, Suleyman, Maes, Wouter, Lutsen, Laurence, Vanderzande, Dirk, Würfel, Uli, Andriessen, Ronn, Rösch, Roland, Hoppe, Harald, Rivaton, Agnès, Uzunoğlu, Gülşah Y., Germack, David, Andreasen, Birgitta, Madsen, Morten V., Bundgaard, Eva, Krebs, Frederik C., Lira-Cantu, Monica January 2012 (has links)
This work is part of the inter-laboratory collaboration to study the stability of seven distinct sets of state-of-the-art organic photovoltaic (OPV) devices prepared by leading research laboratories. All devices have been shipped to and degraded at RISØ-DTU up to 1830 hours in accordance with established ISOS-3 protocols under defined illumination conditions. In this work, we apply the Incident Photon-to-Electron Conversion Efficiency (IPCE) and the in situ IPCE techniques to determine the relation between solar cell performance and solar cell stability. Different ageing conditions were considered: accelerated full sun simulation, low level indoor fluorescent lighting and dark storage. The devices were also monitored under conditions of ambient and inert (N2) atmospheres, which allows for the identification of the solar cell materials more susceptible to degradation by ambient air (oxygen and moisture). The different OPVs configurations permitted the study of the intrinsic stability of the devices depending on: two different ITO-replacement alternatives, two different hole extraction layers (PEDOT:PSS and MoO3), and two different P3HT-based polymers. The response of un-encapsulated devices to ambient atmosphere offered insight into the importance of moisture in solar cell performance. Our results demonstrate that the IPCE and the in situ IPCE techniques are valuable analytical methods to understand device degradation and solar cell lifetime. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
Page generated in 0.0808 seconds