• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Remembering how to walk - Using Active Dendrite Networks to Drive Physical Animations / Att minnas att gå - användning av Active Dendrite Nätverk för att driva fysiska animeringar

Henriksson, Klas January 2023 (has links)
Creating embodied agents capable of performing a wide range of tasks in different types of environments has been a longstanding challenge in deep reinforcement learning. A novel network architecture introduced in 2021 called the Active Dendrite Network [A. Iyer et al., “Avoiding Catastrophe: Active Dendrites Enable Multi-Task Learning in Dynamic Environments”] designed to create sparse subnetworks for different tasks showed promising multi-tasking performance on the Meta-World [T. Yu et al., “Meta-World: A Benchmark and Evaluation for Multi-Task and Meta Reinforcement Learning”] multi-tasking benchmark. This thesis further explores the performance of this novel architecture in a multi-tasking environment focused on physical animations and locomotion. Specifically we implement and compare the architecture to the commonly used Multi-Layer Perceptron (MLP) architecture on a multi-task reinforcement learning problem in a video-game setting consisting of training a hexapedal agent on a set of locomotion tasks involving moving at different speeds, turning and standing still. The evaluation focused on two areas: (1) Assessing the average overall performance of the Active Dendrite Network relative to the MLP on a set of locomotive scenarios featuring our behaviour sets and environments. (2) Assessing the relative impact Active Dendrite networks have on transfer learning between related tasks by comparing their performance on novel behaviours shortly after training a related behaviour. Our findings suggest that the novel Active Dendrite Network can make better use of limited network capacity compared to the MLP - the Active Dendrite Network outperformed the MLP by ∼18% on our benchmark using limited network capacity. When both networks have sufficient capacity however, there is not much difference between the two. We further find that Active Dendrite Networks have very similar transfer-learning capabilities compared to the MLP in our benchmarks.

Page generated in 0.1074 seconds