• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 287
  • 60
  • 60
  • 60
  • 60
  • 60
  • 59
  • 8
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 415
  • 415
  • 138
  • 116
  • 106
  • 80
  • 80
  • 80
  • 80
  • 80
  • 80
  • 80
  • 60
  • 53
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

When an eddy encounters shelf-slope topography

Cherian, Deepak Abraham January 2016 (has links)
Thesis: Ph. D., Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2016. / Cataloged from PDF version of thesis. / Includes bibliographical references (pages 129-135). / Eddies in the ocean move westwards. Those shed by western boundary currents must then interact with continental shelf-slope topography at the western boundary. The presence of other eddies and mean flows complicates this simple picture, yet satellite images show that mesoscale eddies translating near the shelfbreak routinely affect the continental shelves of the Mid-Atlantic Bight, the Gulf of Mexico etc. The consequent cross-shelfbreak transports are currently of unknown importance to shelf budgets of heat, salt and volume. Thus motivated, this thesis uses idealized continuously stratified numerical experiments to explore eddy-slope interactions under four questions: 1. Can the continental slope prevent an eddy from reaching the shelfbreak? 2. What is the structure of the eddy-driven offshore flow? 3. How is the continental shelf affected by an eddy at the shelfbreak? 4. Given surface observations, can one estimate the volume of water transported across the shelfbreak? The experiments show that the efficiency of Rossby wave radiation from the eddy controls whether it can cross isobaths: by radiating energy the eddy becomes shallow enough to move into shallower water. For wide continental slopes, relative to an eddy diameter, a slope can prevent an anticyclone from reaching the shelfbreak by shutting down such radiation. For narrow continental slopes, the interaction repeatedly produces dipoles, whose cyclonic halves contain shelf-slope water stacked over eddy water. The formation of such cyclones is explained. Then, the structure of shelf flows forced by the eddy are studied: their vertical structures are rationalized and scalings derived for their cross-isobath scales; for example, the extent to which the eddy influences the shelf. A recipe for estimating cross-isobath transports based on eddy surface properties is put forward. Finally, the findings are tested against observations in the Middle Atlantic Bight off the northeastern United States. / by Deepak Abraham Cherian. / Ph. D.
322

Temperature and salinity variability in thermohaline staircase layers

Stuebe, David Allen January 2005 (has links)
Thesis (S.M.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2005. / Includes bibliographical references (p. 65-67). / A moored profiler record from the western tropical North Atlantic provides the first continuous time series of temperature, salinity and velocity profiles in a thermohaline staircase. Variations in the intensity of layering and the evolution of layer properties are well documented during the 4.3 month record. Such staircases are the result of strong salt fingering at the interfaces between the mixed layers, and these data provide unique insights into the dynamics of salt fingers. In particular, a striking linear correlation between the temperature and salinity of the layers may be interpreted as resulting from vertical salt finger flux divergences. Data from this record allow new interpretations of previous work on this topic by McDougall (1991). / by David Allen Stuebe. / S.M.
323

Infragravity waves over topography: generation, dissipation, and reflection

Thomson, James M. (James McArthur) January 2006 (has links)
Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2006. / This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. / Includes bibliographical references. / Ocean surface infragravity waves (periods from 20 to 200 s) observed along the southern California coast are shown to be sensitive to the bottom topography of the shelf region, where propagation is linear, and of the nearshore region, where nonlinearity is important. Infragravity waves exchange energy with swell and wind waves (periods from 5 to 200 s) via conservative nonlinear interactions that approach resonance with decreasing water depth. Consistent with previous results, it is shown here that as waves shoal into water less than a few meters deep, energy is transfered from swell to infragravity waves. In addition, it is shown here that the apparent dissipation of infragravity energy observed in the surfzone is the result of nonlinear energy transfers from infragravity waves back to swell and wind waves. The energy transfers are sensitive to the shallow water bottom topography. On nonplanar beach profiles the transfers, and thus the amount of infragravity energy available for reflection from the shoreline, change with the tide, resulting in the tidal modulation of infragravity energy observed in bottom-pressure records on the continental shelf. The observed wave propagation over the shelf topography is dominated by refraction, and the observed partial reflection from, and transmission across, a steep-walled submarine canyon is consistent with long-wave theory. A generalized regional model incorporating these results predicts the observed infragravity wave amplitudes over variable bottom topography. / by James M. Thomson. / Ph.D.
324

Shelf currents, ice and wind : a numerical modeling study

Russell, Sarah L. (Sarah Louise), 1973- January 2003 (has links)
Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, and the Woods Hole Oceanographic Institution), 2003. / This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. / Includes bibliographical references (p. 190-197). / In this thesis, the effects of sea ice, downwelling favorable winds and barotropic background currents on shelf fronts are examined using numerical models. The models are configured with the characteristics of the East Greenland Current, north of the Denmark Strait, in mind. While the models are heavily idealized, basic physical parameters match the observed ocean. The first part of the thesis uses a three dimensional, primitive equation model to examine the behavior of a shelf front under steady, along shelf winds and barotropic currents. The wind stress generates shoreward surface Ekman transport and the barotropic current generates an offshore bottom Ekman transport. In both cases, the Ekman transport causes the creation of mixed layers and a relationship describing the mixed layer thickness is derived relating the cross shelf flux of density to the along shelf flux of density. When there is a barotropic inflow, the cross shelf Ekman mass transport is balanced by a return flow of mass in the interior. When there is a wind stress, in the present model configuration, the influence of the offshore boundary obscures the effect of the Ekman layers. The second part of the thesis focuses on the ice-ocean interaction using a simple, two layer, one dimensional toy model. The interaction of sea-ice, geostrophic currents, and wind are examined. In the presence of a current and the absence of wind, the ice is transported downstream with the current. In the presence of wind and the absence of a current, the net ice-ocean transport is perpendicular to the wind, as is expected for Ekman layer theory. The two layer system acts like a poorly resolved Ekman spiral: the ice has down wind and shoreward transport while the ocean has up wind and shoreward transport. / by Sarah L. Russell. / Ph.D.
325

Scales and structures of baroclinic waves and their influence on climatic states

Branscome, Lee Edward January 1981 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Meteorology and Physical Oceanography, 1981. / Microfiche copy available in Archives and Science. / Vita. / Bibliography: leaves 193-200. / by Lee Edward Branscome. / Ph.D.
326

Space-time structure of changes in atmospheric angular momentum

Anderson, John R. (John Roberts) January 1982 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Meteorology and Physical Oceanography, 1982. / Microfiche copy available in Archives and Science. / Bibliography: leaves 75-77. / by John Roberts Anderson. / M.S.
327

Modelling the synoptic scale relationship between eddy heat flux and the meridional temperature gradient

Ghan, S. J. (Steven John) January 1981 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Meteorology and Physical Oceanography, 1981. / Microfiche copy available in Archives and Science. / Bibliography: leaves 63-65. / by Steven John Ghan. / M.S.
328

Instabilities and radiation of thin, baroclinic jets

Talley, Lynne E January 1982 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Meteorology and Physical Oceanography, 1982. / Microfiche copy available in Archives and Science / Bibliography: leaves 228-233. / Lynne D. Talley. / Ph.D.
329

Assessment of mesoscale eddy parameterizations for coarse resolution ocean models

Solovev, Mikhail A January 1999 (has links)
Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 1999. / Includes bibliographical references (p. 248-253). / Climate simulation with numerical oceanic models requires a proper parameterization scheme in order to represent the effects of unresolved mesoscale eddies. Even though a munber of schemes have been proposed and some have led to improvements in the simulation of the bulk climatological properties, the success of the parameterizations in representing the mesoscale eddies has not been investigated in detail. This thesis examines the role of eddies in a 105-years long basin scale eddy resolving simulation with the MIT General Circulation Model (GCM) forced by idealized wind stress and relaxation to prescribed meridional temperature; this thesis also evaluates the Fickian diffusive, the diabatic Green-Stone (GS) and the quasi-adiabatic Gent-McWilliams (GM) parameterizations in a diagnostic study and a series of coarse resolution experiments with the same model in the same configuration. The mesoscale eddies in the reference experiment provide a significant contribution to the thermal balance in limited areas of the domain associated with the upper 1000M of the boundary regions. Specifically designed diagnostic tests of the schemes show that the horizontal and vertical components of the parameterized flux are not simultaneously downgradient to the eddy heat flux. The transfer vectors are more closely aligned with the isopycnal surfaces for deeper layers, thus demonstrating the adiabatic nature of the eddy heat flux for deeper layers. The magnitude of the coefficients is estimated to be consistent with traditionally used values. However, the transfer of heat associated with timedependent motions is identified as a complicated process that cannot be fully explained with any of the local parameterization schemes considered. The eddy parameterization schemes are implemented in the coarse resolution configuration with the same model. A series of experiments exploring the schemes' parameter space demonstrate that Fickian diffusion has the least skill in the climatological simulations because it overestimates the temperature of the deep ocean and underestimates the total heat transport. The GS and GM schemes perform better in the simulation of the bulk climatological properties of the reference solution, although the GM scheme in particular produces an ocean that is consistently colder than the reference state. Comparison of the eddy heat flux divergence with the parameterized divergences for typical parameter values demonstrates that the success of the schemes in the climatological simulation is not related to the representation of the eddy heat flux but to the representation of the overall internal mixing processes. / by Mikhail A. Solovev. / Ph.D.
330

Representation of eddies in climate models by a potential vorticity flux

Wardle, Richard M January 1999 (has links)
Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), February 1999. / Includes bibliographical references (p. 170-177). / This thesis addresses the parameterization of the heat and momentum transporting properties of eddy motions for use in three-dimensional, primitive equation, z-coordinate atmosphere and ocean models. Determining the transport characteristics of these eddies is fundamental to understanding their effect on the large-scale ocean circulation and global climate. The approach is to transform the primitive equations to yield the altered 'transformed Eulerian mean' (TEM) equations. The assumption is made that the eddy motions obey quasigeostrophic dynamics while the mean flow obeys the primitive equations. With this assumption, the TEM framework leads to the eddies appearing as one term, which acts as a body force in the momentum equations. This force manifests itself as a flux of potential vorticity (PV) - a quantity that incorporates both eddy momentum and heat transporting properties. Moreover, the dynamic velocities are those of the residual mean circulation, a much more relevant velocity for understanding heat and tracer transport. Closure for the eddy PV flux is achieved through a flux-gradient relationship, which directs the flux down the large scale PV gradient. For zonal flows, care is taken to ensure that the resulting force does not generate any net momentum, acting only to redistribute it. Neglect of relative vorticity fluxes in the PV flux yields the parameterization scheme of Gent and McWilliams. The approach is investigated by comparing a zonally-averaged parameterized model with a three dimensional eddy-resolving calculation of flow in a stress-driven channel. The stress at the upper surface is communicated down the water column to the bottom by eddy form drag. Moreover, lateral eddy momentum fluxes act to strengthen and sharpen the mean flow, transporting eastward momentum up its large scale gradient. Both the vertical momentum transfer and lateral, upgradient momentum transfer by eddies, are captured in the parameterized model. The advantages of this approach are demonstrated in two further zonal cases: 1) the spin-down of a baroclinic zone, and 2) the atmospheric jet stream. The time mean TEM approach and the eddy PV flux closure are explored in the context of an eddy-resolving closed basin flow which breaks the zonal symmetry. Decomposition of eddy PV fluxes into components associated with advective and dissipative effects suggest that the component associated with eddy flux divergence, and therefore forcing of the mean flow, is mainly directed down the large scale gradient and can be parameterized as before. Thus, the approach can be used to capture eddy transport properties for both zonal mean and time mean flows. The PV flux embodies both the eddy heat and momentum fluxes and so presents a more unified picture of their transferring properties. It therefore provides a powerful conceptual and practical framework for representing eddies in numerical models of the atmsophere and ocean. / by Richard M. Wardle. / Ph.D.

Page generated in 0.0683 seconds