1 |
Time-Domain Fiber Loop Ringdown Sensor and Sensor NetworkKaya, Malik 17 August 2013 (has links)
Optical fibers have been mostly used in fiber optic communications, imaging optics, sensing technology, etc. Fiber optic sensors have gained increasing attention for scientific and structural health monitoring (SHM) applications. In this study, fiber loop ringdown (FLRD) sensors were fabricated for scientific, SHM, and sensor networking applications. FLRD biosensors were fabricated for both bulk refractive index (RI)- and surface RI-based DNA sensing and one type of bacteria sensing. Furthermore, the effect of glucose oxidase (GOD) immobilization at the sensor head on sensor performance was evaluated for both glucose and synthetic urine solutions with glucose concentration between 0.1% and 10%. Detection sensitivities of the glucose sensors were achieved as low as 0.05%. For chemical sensing, heavy water, ranging from 97% to 10%, and several elemental solutions were monitored by using the FLRD chemical sensors. Bulk indexbased FLRD sensing showed that trace elements can be detected in deionized water. For physical sensing, water and cracking sensors were fabricated and embedded into concrete. A partially-etched single-mode fiber (SMF) was embedded into a concrete bar for water monitoring while a bare SMF without any treatment was directly embedded into another concrete bar for monitoring cracks. Furthermore, detection sensitivities of water and crack sensors were investigated as 10 ml water and 0.5 mm surface crack width, respectively Additionally fiber loop ringdowniber Bragg grating temperature sensors were developed in the laboratory; two sensor units for water, crack, and temperature sensing were deployed into a concrete cube in a US Department of Energy test bed (Miami, FL). Multi-sensor applications in a real concrete structure were accomplished by testing the six FLRD sensors. As a final stage, a sensor network was assembled by multiplexing two or three FLRD sensors in series and parallel. Additionally, two FLRD sensors were combined in series and parallel by using a 2×1 micro-electromechanical system optical switch to control sensors individually. For both configurations, contributions of each sensor to two or three coupled signals were simulated theoretically. Results show that numerous FLRD sensors can be connected in different configurations, and a sensor network can be built up for multiunction sensing applications.
|
2 |
DEFEATING CYBER AND PHYSICAL ATTACKS IN ROBOTIC VEHICLESHyungsub Kim (17540454) 05 December 2023 (has links)
<p dir="ltr">The world is increasingly dependent on cyber-physical systems (CPSs), e.g., robotic vehicles (RVs) and industrial control systems (ICSs). CPSs operate autonomously by processing data coming from both “cyberspace”—such as user commands—and “physical space”—such as sensors that measure the physical environment in which they operate. However, even after decades of research, CPSs remain susceptible to threats from attackers, primarily due to the increased complexity created by interaction with cyber and physical space (e.g., the cascading effects that changes in one space can impact on the other). In particular, the complexity causes two primary threats that increase the risk of causing physical damage to RVs: (1) logic bugs causing undesired physical behavior from the developers expectations; and (2) physical sensor attacks—such as GPS or acoustic noise spoofing—that disturb an RV’s sensor readings. Dealing with these threats requires addressing the interplay between cyber and physical space. In this dissertation, we systematically analyze the interplay between cyber and physical space, thereby tackling security problems created by such complexity. We present novel algorithms to detect logic bugs (PGFuzz in Chapter 2), help developers fix them (PGPatch in Chapter 3), and test the correctness of the patches attempting to address them (PatchVerif in Chapter 4). Further, we explain algorithms to discover the root causes and formulate countermeasures against physical sensor attacks that target RVs in Chapter 5.</p>
|
3 |
Résonateurs mécaniques pour la mesure de la masse volumique et de la viscosité de liquide / Mechanical resonators for liquid viscosity and mass density sensingHeinisch, Martin 25 September 2015 (has links)
Cette thèse synthétise les travaux récents de l’auteur sur l’utilisation de résonateurs mécaniques pour la détermination simultanée de la viscosité et de la masse volumique de liquides. Ces travaux ont été réalisés entre 2010 et 2015 dans le cadre d’une thèse en cotutelle entre l’Institut de Microélectronique et des Microcapteurs de l’Université Johannes Kepler à Linz en Autriche et le Laboratoire de l’Intégration du Matériau au Système de l’Université de Bordeaux en France. Dans des études précédentes effectuées sur ce sujet par les groupes des deux laboratoires, le concept de l’utilisation de résonateurs mécaniques actionnés et mesurés électriquement pour la détermination de la viscosité et de la masse volumique deliquide avait été établi et validé. Ces travaux antérieurs ont montré que la fréquence de résonance et le facteur de qualité de résonateurs immergés dépendent à la fois de la viscosité et de la masse volumique du fluide environnant.L’intérêt d’utiliser de tels microcapteurs résonants vient du fait qu’il est possible de les utiliser in-situ,notamment pour des applications industrielles. Pour ce type d’applications, il est important que les capteurs aient entre autre une bonne résistance physique, une bonne stabilité à long terme, une bonne fiabilité, ainsi qu’une bonne précision de mesure. Pour satisfaire ces exigences et compte tenu des résultats des travaux antérieurs, les objectifs principaux de cette thèse étaient (1) la mise en oeuvre de configurations de mesure robustes offrant une bonne stabilité à long terme et une bonne précision de mesure, ce qui nécessite une faible sensibilité à la température, (2) la mesure simultanée de la viscosité et de la masse volumique avec un seul capteur et (3) la modélisation et la comparaison des performances des différents dispositifs mis au point et testés. Ces trois objectifs ont été atteints en combinant des approches expérimentales et théoriques (hydrodynamique, mécanique du solide et électrodynamique). [...] / This thesis summarizes the author’s recent work on the topic of mechanical resonators for liquidviscosity and mass density sensing, which were achieved between 2010 and 2015 in the course of aninternational joint doctorate program performed at the Institute for Microelectronics and Microsensorsat the Johannes Kepler University Linz, Austria and the Laboratoire de l’Intégration du Matériau auSystème in Bordeaux, France. In previous studies performed by work groups of both laboratories,the concept of using electrically actuated and read-out mechanical resonators for the determination ofliquids’ viscosities and mass densities has been established and elaborated. These works showed that theresonance frequencies and quality factors of immersed resonators are affected by the liquids’ viscositiesand mass densities, respectively. The investigated concepts included devices using structured polymeror wet-etched new silver sheets as well as micro-machined silicon and screen-printed PZT resonators.The motivation for investigating and developing such miniaturized resonators was formed, amongstothers, by their capability for in-line, in-situ and handheld-devices for laboratory as well as for industrialapplications. Especially for the latter, physical robustness, long-term stability and reliability,as well as accurate measurement results are basic requirements. To satisfy these requirements andconsidering the results and insights of earlier works, the objectives of this thesis were first, implementingrobust measuring setups featuring long-term stability and high measurement accuracy, where thelatter furthermore requires low cross-sensitivity to temperature. Second, investigating the capabilityof measuring both, a liquid’s mass density and viscosity with a single device as well as providing anestimate of achievable measurement accuracies for both quantities. And third, enabling the modelingof the performance of different viscosity and mass density sensors on the one side and their comparisonon the other side. These three specifications were accomplished by following mainly experimental approachesand investigations but also by elaborating the underlying theory of hydrodynamics, structuralmechanics, and electrodynamics. [...] / Die vorliegende Dissertation fasst die rezenten Forschungsergebnisse des Verfassers im Bereich mechanischerResonatoren für Viskositäts- und Dichtesensorik zusammen, welche zwischen 2010 und 2015 imRahmen eines international joint doctorate programs am Institut für Mikroelektronik und Mikrosensorikder Johannes Kepler Universität Linz, sowie am Laboratoire de l’Intégration du Matériau auSystème der Université de Bordeaux erreicht wurden. In den Vorarbeiten von Arbeitsgruppen beiderInstitute wurden bereits Konzepte für elektrisch angeregte und ausgelesene mechanische Resonatorenzur Bestimmung von Viskosität und Dichte von Flüssigkeiten erarbeitet und umgesetzt. Hierbei konntegezeigt werden, dass die Resonanzfrequenz und Güte eingetauchter Resonatoren abhängig sindvon Viskosität und Dichte der jeweiligen Flüssigkeiten. Die dabei untersuchten Konzepte beinhaltetenstrukturierte Polymerfolien, nass-chemisch geätzte Neusilberbleche, mikromechanisch hergestellte Siliziumstrukturen,sowie siebgedruckte PZT Resonatoren.Die Motivation zur Untersuchung und Entwicklung solcher miniaturisierter Resonatoren resultiert unteranderem aus deren Anwendbarkeit für Inline-, Insitu- und Handgeräte für Labor- bzw. industrielle Anwendungen.Besonders für Letztere sind Robustheit, Langzeitstabilität und Zuverlässigkeit, aber auchpräzise Messergebnisse Grundvoraussetzung. Um den Anforderungen der Ergebnisse und Erkenntnisseder zuvor genannten Arbeiten gerecht zu werden, wurden folgende Ziele für diese Dissertationdefiniert. Erstens, die Entwicklung robuster, langzeitstabiler Messaufbauten zur Erreichung präziserMessergebnisse, wodurch eine geringe Temperaturquerempfindichkeit als weitere Bedingung aufgestelltwurde. Zweitens sollte untersucht werden ob und mit welcher Genauigkeit sowohl Viskosität als auchDichte mit einem einzigen Instrument gemessen werden können. Drittens, sollte einerseits das Verhaltenverschiedener Viskositäts- und Dichtesensoren modelliert bzw. deren Vergleich ermöglicht werden.Basierend auf einer vorwiegend experimentellen Herangehensweise und unter Miteinbeziehung der zugrundeliegendenTheorien von Strömungs- und Strukturmechanik sowie der Elektrodynamik, konntendie o.g. Anforderungen erfüllt werden. [...]
|
Page generated in 0.0733 seconds