• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Advanced methods for GLAD thin films

Kupsta, Martin 06 1900 (has links)
Thin films are produced from layers of materials ranging from nanometres to micrometres in height. They are increasingly common and are being used in integrated circuit design, optical coatings, protective coatings, and environmental sensing. Thin films can be fabricated using a variety of methods involving chemical reactions or physical transport of matter. Glancing angle deposition (GLAD) thin films are produced using physical vapour deposition techniques under high vacuum conditions where exploitation of the geometric conditions between the source and the substrate causes enhanced atomic self shadowing to produce structured thin films. This work deals with the modification of these films, emph{in situ} by altering growing conditions through substrate temperatures control, or post-deposition through reactive ion etching (RIE). The first part of the thesis deals with the modification of TiO$_2$ GLAD humidity sensors using RIE with CF$_4$. The data presented demonstrates improved response times to step changes in humidity. Characterization revealed response times of better then 50~ms (instrument-limited measurement). An etch recipe for complete removal of TiO$_2$ was also demonstrated with shadow masking to transfer patterns into GLAD films. The subsequent chapter focuses on modification of thin film growth conditions by increasing adatom mobility. A radiative heating system was designed and implemented with the ability to achieve chuck temperatures of 400$^circ$C. Capping layers on top of GLAD films were grown to demonstrate effects of emph{in situ} heating, and a quantitative analysis of crack reduction with increased temperatures is presented. Lithographic pattern transfer onto a capped GLAD film was demonstrated. Opposite to the goal of the preceding chapter, the focus of the final experimental chapter was to limit adatom mobility. A LN$_2$-based cooling system was designed and implemented for the purpose of studying the growth by GLAD of lower melting point materials, which under regular growth conditions do not form well-defined structures. Chuck temperatures of $-60$$^circ$C can be achieved during deposition while still allowing substrate rotation. The growth of helical copper films was used to demonstrate the effects of emph{in situ} substrate cooling. / Micro-Electro-Mechanical Systems (MEMS) and Nanotechnology
2

Advanced methods for GLAD thin films

Kupsta, Martin Unknown Date
No description available.
3

Tvorba motivů tenkovrstvými metodami / Creating themes thin-film methods

Ondráček, Michal January 2014 (has links)
The master’s thesis deals with the theory of thin film technology, especially creating these layers. The work includes the distribution of vacuum deposition techniques for physical (PVD) and chemical (CVD). The main aim is to create a theme in different ways of implementation by using magnetron sputtering device, and these motives evaluated in terms of the quality of sputtering.
4

Effect of temperature on early stage adhesion during TiAlN sliding against Inconel 718 and Stainless steel 316L : High temperature tribology

Ali, Ahsan January 2023 (has links)
High-performance materials such as stainless steels and nickel based super alloys are widely used in demanding applications where high mechanical and thermal properties are required. The applications of super alloys are mainly found in jet engines, power plants and gas turbines demanding high fatigue strength, corrosion and oxidation resistance as well as wear resistant properties. In order to use them, they go through various machining processes such as milling, turning, cutting, polishing etc. until the final product is achieved. Modern manufacturing industries employs various machining tools and technologies to improve the machining process of heat resistant super alloys. However, there are still challenges which needs to be addressed. Among them, adhesive wear of the machining tools is one of the main wear mechanism during the tribological interaction of tool and workpiece, preventing them to achieve the desired quality and surface finish of the end product. Moreover, it damages the tool reducing its lifecycle and in return, increasing the production cost. Among the cutting tools tungsten carbide (WC/Co) tools coated with TiAlN coating due to their good high temperature performance are extensively used. Nonetheless, these coatings still face issue like adhesive wear, abrasion, oxidation at higher temperature damaging the tools and subsequent machining. Therefore, it is imperative to understand the initiation mechanism of adhesive wear during the tribological interaction of super alloys and coated cutting tool material. In this research work, the tribological response of two coatings deposited by physical vapour deposition (PVD), having the composition Ti60Al40N and Ti40Al60N have been studied against two super alloys material, i.e. Inconel 718 and stainless steel 316L. A high temperature SRV (Schwingung (Oscillating), Reibung (Friction), Verschleiß (Wear)) reciprocation friction and wear test set up was employed to investigate the friction behaviour, wear rate and dominant wear mechanisms.  For Ti60Al40N coating, the experimental results revealed that generally, friction increases in case of sliding against Inconel 718 up to 400 °C and drops at 760 °C. A high wear volume at room temperature and a decrease to a minimum at 760 °C has been observed for Inconel 718. On the other side, Stainless steel 316L (SS 316L) faces a continuous rise in friction coefficient with highest value at 760 °C during sliding against Ti60Al40N coating. Wear is highest at 400 °C for SS 316L pin. The worn surfaces shows that both workpiece materials experience increase in material transfer due to adhesive wear with rise in temperature. At 400 °C, adhesion is the primary wear mechanism for both workpiece materials. A further rise in temperature to 760 °C promotes the adhesive wear through oxides formation on both material surfaces.  Similarly, Ti40Al60N coating shows the same friction behaviour with change in average steady state friction values for both material of Inconel 718 and SS 316L. Both workpiece materials responds in a similar way to wear volume loss, i.e. lowest at room temperature and highest at 760 °C. For Inconel 718, transfer of coating constituents on to the Inconel 718 pin surface was detected and associated with coating rupture and peeling, exacerbating with rise in temperature. Adhesion, abrasion, and oxidation are primary wear mechanisms at 400 °C and 760 °C. For SS 316L, coating transfer only happen at 400 °C. No damage of coating at 40 °C, a complete damage at 400 °C, and formation of dense porous oxides layers at 760 °C have been noticed. At 400 °C, adhesion, abrasion, and chipping while at 760 °C, adhesion, three body abrasion, ploughing and oxidation are the main wear mechanisms.

Page generated in 0.1207 seconds