• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 15
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 76
  • 42
  • 34
  • 19
  • 16
  • 15
  • 13
  • 12
  • 11
  • 11
  • 9
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Picosecond Laser-Induced Transient Gratings and Anisotropic State-Filling in Germanium

Boggess, Thomas F. (Thomas Frederick) 12 1900 (has links)
We present a comparative theoretical study of the transient grating coherent effects in resonant picosecond excitation-probe experiments. Signals in both the probe and conjugate directions are discussed. The effects of recombination, non-radiative scattering and spatial and orientational diffusion are included. The analysis is applied to both a molecular and to a semiconductor model. Signal contributions from concentration and orientational gratings are distinguished and their temporal natures discussed. The theory is used to explain our recent observations in germanium. Included are discussions of picosecond transient grating self-diffraction measurements that can be understood in terms of an orientational grating produced by anisotropic (in k-space) state-filling. Though there have been predictions and indirect experimental evidence for isotropic state-filling in germanium, this is the first direct experimental indication of anisotropic state-filling in a semiconductor.
12

Picosecond laser filamentation in air

Schmitt-Sody, Andreas, Kurz, Heiko G, Bergé, Luc, Skupin, Stefan, Polynkin, Pavel 02 September 2016 (has links)
The propagation of intense picosecond laser pulses in air in the presence of strong nonlinear self-action effects and air ionization is investigated experimentally and numerically. The model used for numerical analysis is based on the nonlinear propagator for the optical field coupled to the rate equations for the production of various ionic species and plasma temperature. Our results show that the phenomenon of plasma-driven intensity clamping, which has been paramount in femtosecond laser filamentation, holds for picosecond pulses. Furthermore, the temporal pulse distortions in the picosecond regime are limited and the pulse fluence is also clamped. In focused propagation geometry, a unique feature of picosecond filamentation is the production of a broad, fully ionized air channel, continuous both longitudinally and transversely, which may be instrumental for many applications including laser-guided electrical breakdown of air, channeling microwave beams and air lasing.
13

Lasers de Nd:YAG nos regimes de nano e de picossegundos em esmalte e em dentina-análises morfológica e química / Nd:YAG picosecond and nanosecond lasers in enamel and dentin: morphological and chemical analysis

Lizarelli, Rosane de Fátima Zanirato 31 August 2000 (has links)
Vários experimentos têm demonstrado que pulsos ultra curtos no domínio de subpicossegundos promovem uma combinação de efeitos termomecânicos que superam algumas das objeções ao uso de um laser como instrumento removedor. Usando os parâmetros apropriados de operação, lasers com pulsos ultra curtos podem se comportar melhor do que instrumentos convencionais, incluindo alguns dos lasers pulsados comercialmente já disponíveis na Odontologia. A exploração e otimização nos parâmetros dos lasers disponíveis podem promover a remoção de certas objeções ao amplo uso dos lasers. O uso de lasers de pulsos ultra-curtos para ablação de dentes previne o superaquecimento e é uma alternativa para a remoção mecânica de material; além de minimizar o volume desse material removido. Através de estudos morfológicos e químicos, são apresentadas as características de interação laser pulsado - tecido duro dental, com relação a sua largura de pulso - nano ou picossegundos. O objetivo principal é dar início a um novo sistema para ablação de esmalte e dentina humanos: o laser de Nd:YAG no regime de picossegundos. A eficiência da ablação com laser através de um regime de picossegundos minimiza a destruição do material adjacente devido a formação de plasma e ataque. Isso previne a geração excessiva de ondas de choque e promove uma considerável diminuição nos efeitos mecânicos. A diminuição das ondas de choque provavelmente também poderá reduzir a vibração e conseqüentemente a sensação de dor, se aplicado clinicamente. Apesar da baixa taxa de ablação, os resultados mostram a real possibilidade para usar um sistema laser comercial relativamente simples para pulsos em picossegundos que poderia promover a Dentística Operatória Puntual e Seletiva, em outras palavras, seria possível tratar apenas o tecido alterado com seletividade e sem remover tecido sadio ou mesmo promover danos aos tecidos ao redor. Na maioria dos experimentos aqui apresentados, o laser de pulso ultra-curtos apresentou aumento na proporção Ca/P, melhorando a resistência química da superfície irradiada. Além disso, os cortes precisos resultam em superfícies mais lisas, que é importante para prevenir a colonização do biofilme. Outros estudos in vitro são necessários, mudando os parâmetros de energia e simulando situações clínicas para propor o uso efetivo desse sistema in vivo, mas, de fato, o sistema laser em picossegundos pode melhorar a qualidade da Dentística Operatória num futuro breve. / In several already demonstrated experiments, ultrashort laser pulses on the subpicosecond range have been shown to produce a strong thermo-mechanical effect, in several different situations. Even been out side dentistry, the general aspects of subpicosecond pulses interaction with matter are of broad applications on can be used as general references. This strong thermo-mechanical effect has created objections toward the use of such lasers as a material removal too1. On the other hand, using the appropriated parameters of operation, ultra short laser pulses of subnanosecond duration could present better performance than conventional lasers operating at nanosecond regime in several aspects. Through chemical and morphological studies, they are presented the main features from interaction between pulsed laser and dental hard tissue, considering pulse width - nano or picosecond pulse. The main objective is starting to use a new system to ablate human enamel and dentin: Nd:YAG picosecond laser system. Efficient laser ablation in the picosecond regime minimizes destruction of adjacent material due to a plasma formation and etching. This avoids an excessive generation of shock waves and promotes a considerable decrease in mechanical effects. The decreasing of shock waves also reduces vibration and consequently the sensation of pain, if clinically used. Despite the small ablation rate, our results show the real possibility to use a relative simple commercial laser system for picosecond pulses to be use effectively in Dentistry. The real clinical use of a picosecond laser system could promote the Punctual and Selective Operative Dentistry, in other words, we could treat just the decayed tissue with selectivity without remove sound tissue or even promote damage to tissues around. Besides, the precise cuts maybe give us a smoother surface, which is important to prevent biofilm colonization. We need to evaluate more in vitro studies, changing parameters and simulating clinical situations to propose the effective use of this system in vivo, but in fact, we believe that the picosecond laser system can improve the quality of Operative Dentistry in a brief future.
14

Materials for millimetre wave detection using femtosecond optical pulses.

January 1999 (has links)
by Chi Sang Wong. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references. / Abstract also in Chinese. / Abstract --- p.ii / Acknowledgements --- p.vii / Table of Contents --- p.viii / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Background --- p.1 / Chapter 1.2 --- Organisation of Thesis --- p.4 / References --- p.6 / Chapter 2 --- Principles and Theories --- p.8 / Chapter 2.1 --- Device Concepts --- p.9 / Chapter 2.2 --- Picosecond Photoconductors --- p.14 / Chapter 2.3 --- Photoconducting Antennas --- p.18 / Chapter 2.4 --- Summary --- p.20 / References --- p.21 / Chapter 3 --- Self-mode-locked Ti:sapphire (Ti:Al203) Laser --- p.24 / Chapter 3.1 --- Introduction --- p.25 / Chapter 3.2 --- Self-mode-locked Ti:sapphire Laser Cavity --- p.26 / Chapter 3.3 --- Negative Dispersion Using Pairs of Prisms --- p.28 / Chapter 3.4 --- Kerr-lens Mode-Locked Model: Role of Space-time Effects --- p.33 / Chapter 3.5 --- Initiation of Self-mode-locked Pulses --- p.37 / Chapter 3.6 --- 39-fs Pulses from A Self-mode-locked Ti:sapphire Laser --- p.38 / Chapter 3.7 --- Summary --- p.42 / References --- p.43 / Chapter 4 --- Photoconductive Detection of Millimetre Waves Using LT-GaAs --- p.46 / Chapter 4.1 --- Introduction --- p.47 / Chapter 4.2 --- Devices Structures --- p.48 / Chapter 4.3 --- Experimental Setup --- p.52 / Chapter 4.4 --- Results and Discussion --- p.54 / Chapter 4.5 --- Summary --- p.57 / References --- p.58 / Chapter 5 --- Investigation of Other Materials for THz Detection --- p.60 / Chapter 5.1 --- Introduction --- p.61 / Chapter 5.2 --- Material Preparation --- p.62 / Chapter 5.3 --- Devices Structures --- p.64 / Chapter 5.4 --- Experimental Setup --- p.68 / Chapter 5.5 --- Results and Discussion --- p.69 / Chapter 5.6 --- Investigation of Other Materials --- p.72 / Chapter 5.7 --- Summary --- p.73 / References --- p.74 / Chapter 6 --- Characteristics of Millimetre Waves --- p.76 / Chapter 6.1 --- Introduction --- p.77 / Chapter 6.2 --- Experimental Setup --- p.78 / Chapter 6.3 --- Experimental Results --- p.80 / Chapter 6.4 --- Experimental Setup --- p.83 / Chapter 6.5 --- Experimental Results --- p.85 / Chapter 6.6 --- Summary --- p.86 / References --- p.87 / Chapter 7 --- Conclusion and Future Work --- p.88 / Chapter 7.1 --- Conclusion --- p.88 / Chapter 7.2 --- Future Work --- p.91 / Appendixes --- p.A-l / Chapter Appendix A: --- Hall Effect Measurement System --- p.A-l / Chapter Appendix B: --- Photography of Device Structures --- p.A-2 / Chapter Appendix C: --- Fast Fourier Transform Program --- p.A-3 / Chapter Appendix D: --- List of Publications --- p.A-4
15

Generation and characterization of tunable multi-wavelength continuous-wave and picosecond-pulsed outputs from a semiconductor laser. / CUHK electronic theses & dissertations collection

January 1998 (has links)
by Ka-Suen Lee. / "June 1998." / Thesis (Ph.D.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
16

A study of the generation of picosecond pulses and all optical clock recovery with wavelength tunability and switchability. / CUHK electronic theses & dissertations collection

January 2006 (has links)
1. Gain modulation induced by the injected optical signals in Semiconductor Optical Amplifier (SOA) is the basis of the whole work in this thesis. For a good understanding of the gain dynamics in SOA, we studied the propagation of lightwave and the carrier density dynamics in SOAs. Detailed theory and simulation results about the gain modulation characteristics induced by the injected signals into the SOA are presented. The simulation results have a good guidance for the experiments in this thesis. / 2. The theory of the actively mode-locked ring laser is studied. Following the theoretical discussion about the actively mode-locked ring laser, the experimental study about a novel actively mode-locked ring laser based on cross-gain-modulation in a SOA, which is employed as both the gain medium and mode-locking element, is proposed and demonstrated. Stable uniform pulse trains with pulse-widths about 24ps at 5GHz repetition frequency are obtained. The wavelength of the mode-locked optical pulses can be continuously tuned from 1533nm to 1565nm. In the whole tuning range, the pulse-width and bandwidth of the output pulses are respectively within 22-26ps and 0.7-0.8nm. / 3. Generation and wavelength switching of picosecond pulses by optically modulating a SOA in a ring laser with eight cascaded fiber Bragg gratings playing the role of the wavelength selecting element is proposed and demonstrated. Stable amplitude equalized pulse trains with a pulsewidth about 43ps at 2.5GHz have been obtained by injecting optical control signals into the laser. When we change the modulation frequency of the injected optical signals from 2.5 GHz to 10 GHz, wavelength switchable optical pulses at 10 GHz have also been obtained through optimizing the experimental parameters such as the SOA driving current and the power of the injection optical signals. Wavelength switching among eight wavelengths is achieved by merely tuning an intra-cavity optical delay line. The theoretical analysis of multi-wavelength operation using the proposed ring cavity has also been presented. / 4. In the actively mode-locked ring laser based on 1.55mum SOA, there exist changes of both gain and refractive index since the wavelengths of the control signal and the data signal are in the same gain spectral region. The gain change is sometimes unwanted because it may result in the amplitude fluctuations of the mode locked pulses and pattern effects. We proposed an all-optical FM actively mode-locked ring laser scheme based on a 1.3mum SOA as a gain-transparent phase modulation only element. The principle of the phase modulation in 1.3mum SOA has been discussed. / 5. Optical clock recovery, which extracts a continuous train of pulses or clock from the modulated data, is an essential technology to realize all optical signal processing such as all optical regeneration repeater and all optical de multiplexing. We experimentally studied all optical clock recovery at 10GHz with switchable wavelengths using the proposed mode-locked ring laser. Very stable clock signals corresponding to the bit rate of the injection data have been obtained by injecting 10Gbit/s 231-1 PRBS data signals into the laser cavity. The side-mode-suppression ratio of the recovery clock signals is better than 28dB. The clock recovery scheme can still function well when the wavelength, polarization state and the density of zeros of the injected data signals are changed. / 6. Finally, we discussed the noises in all optical networks and all optical methods of noise reduction. All optical noise reduction methods are reviewed. We also discussed the feasibility of all optical noise reduction method using the proposed ring laser scheme. / With the advances in Dense Wavelength Division Multiplexing (DWDM) and Optical Time Division Multiplexing (OTDM) technologies and their ever-widening applications, optical transport networks will eventually evolve into all optical networks based on DWDM and OTDM or their combination. However, the adoption of optical technologies has a significant impact on network transmission performance because there will be many optical amplifiers, wavelength division multiplexing devices and optical cross connects which may bring optical noises and time jitters to the all optical networks. Hence many key technologies including the generation of ultrashort optical pulses and all optical signal regeneration are needed in order to realize all optical transport networks. This dissertation mainly describes the generation of optical pulses and all optical clock recovery for all optical signal regeneration. Several theoretical and experimental research results have been obtained as follows. / He Jian. / "April 2006." / Adviser: K. T. Chan. / Source: Dissertation Abstracts International, Volume: 67-11, Section: B, page: 6610. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
17

Study of picosecond-scale electron dynamics in laser-produced plasmas with and without an external magnetic field

McCormick, Matthew Warren 17 February 2014 (has links)
The interaction of ultra-short laser pulses and cluster targets can be used to explore a number of interesting phenomena, ranging from nuclear fusion to astrophysical blast waves. In our experiments, we focused on exploring very fast plasma dynamics of a plasma created by ionizing clusters and monomer gas. By using a 115 fs laser pulse, we can even study sub-picosecond plasma dynamics. In addition, we also wanted to impose an external magnetic field on these plasmas to study how the plasma evolution would change. The results of this work produced two significant results. First, a new, extremely fast ionization mechanism, with velocities as high as 0.5 c, was discovered which allows for significant plasma expansion on a picosecond time-scale. Experimental studies measured the velocity of the ionization wave, while particle-in-cell simulations helped explain the source and longevity of the wave. It was also observed that this ionization wave was not affected by the external magnetic field. Second, the external field was shown to inhibit plasma expansion on a time-scale of tens of picoseconds, which seems to be one of the first demonstrations of magnetic confinement on such a fast time-scale. Simple 1D simulations tell us that the field appears to slow electron heat transport in the plasma as well as inhibiting collisional ionization of electrons expanding into the surrounding gas. The inhibition of plasma expansion by the field on this time-scale may provide some evidence that magnetic confinement of a fusion plasma created by exploding clusters could improve the fusion yield by slowing heat loss as well as possibly electrostatically confining the hot ions. / text
18

Plasma waveguides for high-intensity laser pulses

Spence, David James January 2001 (has links)
This thesis documents the development of plasma waveguides for high-intensity laser pulses. Initial work concentrated on the development of the discharge-ablated capillary waveguide, based on the work of A. Zigler (Zigler, A., Y. Ehrlich, C. Cohen, J. Krall and P. Sprangle, J. Opt. Soc. Am. B 13, 68). The waveguide was shown to be capable of guiding picosecond laser pulses with an intensity of 10<sup>16</sup> W cm<sup>-2</sup> over a length of 10 mm. The pulse energy transmission of the capillary was increased from 48% to 70% when the discharge was fired. An interferometry-based measurement technique was developed, allowing measurement of the electron density profile formed in the capillary waveguide. These measurements were used as input to a numerical simulation that predicted the propagation of intense laser pulses through partially-ionised plasma waveguides. Numerical simulations accurately reproduced the picosecond pulse guiding results, and gave important insights into the properties and severe drawbacks of partially-ionised waveguides. Previous work on partially-ionised plasma waveguides has not fully explored the implications of the propagation of intense pulses through the partially-ionised plasma. For polypropylene waveguides, it was shown that for pulses with an intensity of 10<sup>16</sup> W cm<sup>-2</sup>, the waveguide is not capable of high-quality guiding. However, for pulses with an intensity of greater than 10<sup>17</sup> W cm<sup>-2</sup>, high-quality guiding is predicted through the partially-ionised waveguide in a new regime called "quasi-matched guiding". A novel gas-filled capillary discharge waveguide was designed and built. The device was shown to form a guiding channel inside a capillary pre-filled with gas. Interferometry measurements of the electron density profile formed in a hydrogen-filled capillary discharge waveguide showed that an approximately parabolic plasma waveguide could be formed in an essentially fully-ionised hydrogen plasma. The device was used to guide femtosecond laser pulses, with an intensity of 10<sup>17</sup> W cm<sup>-2</sup>, over distances of 20 and 40 mm, with a pulse energy transmission of 92% and 82% respectively. For the 20 mm-long waveguide, the peak intensity in the output plane of the waveguide was 70% of that at the waveguide input. These results indicate the lowest coupling and insertion losses of any waveguide published to date. The gas-filled capillary discharge waveguide is shown to be capable and versatile, and is suited for use as a tool in other applications. The use of the waveguide in the fields of XUV lasers and laser wakefield acceleration is discussed.
19

Picosecond photoresponse of high critical temperature superconductor thin films.

Hegmann, Frank Anthony. Preston, John S. Unknown Date (has links)
Thesis (Ph.D.)--McMaster University (Canada), 1995. / Source: Dissertation Abstracts International, Volume: 56-12, Section: B, page: 6833. Adviser: J. S. Preston.
20

Ultrafast dynamics in InAs quantum dot and GaInNAs quantum well semiconductor heterostructures /

Malins, David Brendan. January 2007 (has links)
Thesis (Ph.D.) - University of St Andrews, December 2007.

Page generated in 0.0586 seconds