• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyse spectrale des signaux chaotiques

Feltekh, Kais 12 September 2014 (has links) (PDF)
Au cours des deux dernières décennies, les signaux chaotiques ont été de plus en plus pris en compte dans les télécommunications, traitement du signal ou transmissions sécurisées. De nombreux articles ont été publiés qui étudient la densité spectrale de puissance (DSP) des signaux générés par des transformations spécifiques. La concentration sur la DSP est due à l'importance de la fréquence dans les télécommunications et la transmission sécurisée. Grâce au grand nombre de systèmes sans fil, la disponibilité des fréquences de transmission et de réception est de plus en plus rare pour les communications sans fil. Aussi, les médias guidés ont des limitations liées à la bande passante du signal. Dans cette thèse, nous étudions certaines propriétés associées à la bifurcation collision de frontière pour une transformation unidimensionnelle linéaire par morceaux avec trois pentes et deux paramètres. Nous calculons les expressions analytiques de l'autocorrélation et de la densité spectrale de puissance des signaux chaotiques générés par les transformations linéaires par morceaux. Nous montrons l'existence d'une forte relation entre les différents types de densité spectrale de puissance (passe-bas, passe-haut ou coupe-bande) et les paramètres de bifurcation. Nous notons également en évidence une relation entre le type de spectre et l'ordre des cycles attractifs. Le type du spectre dépend de l'existence des orbites périodiques au-delà de la bifurcation de collision de frontière qui a donné naissance au chaos. Nous utilisons ensuite les transformations chaotiques pour étudier la fonction d'ambiguïté. Nous combinons quelques transformations chaotiques bien déterminées pour obtenir un spectre large bande avec une bonne fonction d'ambiguïté qui peut être utilisée en système radar.
2

Analyse spectrale des signaux chaotiques / Spectral analysis of chaotic signals

Feltekh, Kais 12 September 2014 (has links)
Au cours des deux dernières décennies, les signaux chaotiques ont été de plusen plus pris en compte dans les télécommunications, traitement du signal ou transmissionssécurisées. De nombreux articles ont été publiés qui étudient la densitéspectrale de puissance (DSP) des signaux générés par des transformations spécifiques.La concentration sur la DSP est due à l’importance de la fréquence dans lestélécommunications et la transmission sécurisée. Grâce au grand nombre de systèmessans fil, la disponibilité des fréquences de transmission et de réception est de plus enplus rare pour les communications sans fil. Aussi, les médias guidés ont des limitationsliées à la bande passante du signal. Dans cette thèse, nous étudions certainespropriétés associées à la bifurcation collision de frontière pour une transformationunidimensionnelle linéaire par morceaux avec trois pentes et deux paramètres. Nouscalculons les expressions analytiques de l’autocorrélation et de la densité spectralede puissance des signaux chaotiques générés par les transformations linéaires parmorceaux. Nous montrons l’existence d’une forte relation entre les différents typesde densité spectrale de puissance (passe-bas, passe-haut ou coupe-bande) et les paramètresde bifurcation. Nous notons également en évidence une relation entre le typede spectre et l’ordre des cycles attractifs. Le type du spectre dépend de l’existencedes orbites périodiques au-delà de la bifurcation de collision de frontière qui a donnénaissance au chaos. Nous utilisons ensuite les transformations chaotiques pour étudierla fonction d’ambiguïté. Nous combinons quelques transformations chaotiquesbien déterminées pour obtenir un spectre large bande avec une bonne fonction d’ambiguïtéqui peut être utilisée en système radar / During the two last decades, chaotic signals have been increasingly consideredin telecommunications, signal processing or secure transmissions. Many papers haveappeared which study the power spectral density (PSD) of signals issued from somespecific maps. This interest in the PSD is due to the importance of frequency in thetelecommunications and transmission security. With the large number of wirelesssystems, the availability of frequencies for transmission and reception is increasinglyuncommon for wireless communications. Also, guided media have limitations relatedto the bandwidth of a signal. In this thesis, we investigate some properties associatedto the border-collision bifurcations in a one-dimensional piecewise-linear map withthree slopes and two parameters. We derive analytical expressions for the autocorrelationsequence, power spectral density of chaotic signals generated by our piecewiselinearmap. We prove the existence of strong relation between different types of thepower spectral density (low-pass, high-pass or band-stop) and the parameters. Wealso find a relation between the type of spectrum and the order of attractive cycleswhich are located after the border collision bifurcation between chaos and cycles.We use the chaotic transformations to study the ambiguity function. We combinesome chaotic transformations well determined to obtain a broadband spectrum witha good ambiguity function that can be used in radar systems

Page generated in 0.083 seconds