• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 3
  • 2
  • Tagged with
  • 16
  • 16
  • 13
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Trajectory control in curves, towards the perceptive-ESC : through a piecewise affine approach / Contrôle de trajectoire en virage, vers l'ESC perceptif : à travers une approche affine par morceaux

Benine-Neto, André 15 November 2011 (has links)
Les avancées dans les technologies ont permis le développement de systèmes d’aide à la conduite (ADAS) pour prévenir les accidents routiers causés par les erreurs de conduite au manque d’attention de conducteurs. Plusieurs types sont déjà disponibles sur le marché, comme l’ABS et l’ESC (ou ESP), utilisant uniquement des capteurs proprioceptifs. Les capteurs extéroceptifs sont présents dans les ADAS plus récents, comme LKAS (maintien dans la voie) et LDWS. Cependant, l‘ESC agit dans la dynamique du véhicule en situations d¹urgence alors que les systèmes d’alerte de sortie de voie sont conçus pour les situations de faible sollicitation latérale. Cette thèse traite le développement d’un ADAS, nommé ESC-perceptif, qui intègre les informations des capteurs extéroceptifs (camera vidéo) avec le contrôle de la vitesse de lacet afin d’éviter les sorties de voie, y compris pour des conditions de fortes sollicitations latérales. La prise en compte de la saturation de forces de contact pneumatiques-chaussée est essentielle pour la conception de ce système. La non-linéairité des efforts pneumatiques est traité par l'approche des systèmes affines par morceaux (PWA). Cela permet de mener l'analyse et la synthèse de contrôleurs en combinant les fonctions de Lyapunov avec la résolution de problèmes d’optimisations sous contraintes d¹inégalités matricielles linéaires et bilinéaires. Au long de la thèse, plusieurs contrôleurs PWA pour le développement de ADAS sont présentés. L’ESC-perceptif, basé uniquement sur les capteurs disponibles sur les véhicules commercialisés est validé expérimentalement sur véhicule prototype. / Advances in the technology of sensors and actuators have enabled the development of driver assistance systems (ADAS) to prevent road accidents due to drivers mistakes or inattention. Several types are already deployed in the commercialised vehicles, such as, ABS and ESC by means of proprioceptive sensors. Exteroceptive sensors can be seen in systems such as, LKAS (Lane Keeping Assistance Systems) and LDWS (Lane Departure Warning Systems). While the ESC deals with the vehicle dynamics in emergency situations, the systems to avoid lane departure are currently designed to work in conditions of weak lateral solicitation. This thesis deals with the development of a ADAS, named perceptive-ESC, which integrates the information from the exteroceptive sensors (provided by a video camera) with the yaw rate control in order to avoid unintended lane departure even in situation of strong lateral solicitation or degraded road adhesion. Considering the saturation of the lateral tyre forces is essential for the conception of the perceptive-ESC, therefore the nonlinear behaviour of the lateral tyre forces is taken into account by the use of Piecewise Affine (PWA) Systems which analysis and control synthesis are based on quadratic Lyapunov functions casted as optimisation problems with linear and bilinear matrix inequalities constraints. Throughout the thesis, several PWA controllers for driver assistance systems are presented in which the complexity is gradually increased from simply enhancing the vehicle handling to the perceptive-ESC based only on sensors available in the currently commercialised passenger cars, which has been validated by practical experiments on a prototype vehicle.
2

Identification of switched linear regression models using sum-of-norms regularization

Ohlsson, Henrik, Ljung, Lennart January 2013 (has links)
This paper proposes a general convex framework for the identification of switched linear systems. The proposed framework uses over-parameterization to avoid solving the otherwise combinatorially forbidding identification problem, and takes the form of a least-squares problem with a sum-of-norms regularization, a generalization of the ℓ1-regularization. The regularization constant regulates the complexity and is used to trade off the fit and the number of submodels. / <p>Funding Agencies|Swedish foundation for strategic research in the center MOVIII||Swedish Research Council in the Linnaeus center CADICS||European Research Council|267381|Sweden-America Foundation||Swedish Science Foundation||</p>
3

Reach Control on Simplices by Piecewise Affine Feedback

Ganness, Marcus 31 December 2010 (has links)
This thesis provides a deep study of the Reach Control Problem (RCP) for affine systems defined on simplices. Necessary conditions for solvability of the problem by open loop control are presented, improving upon the results in the literature which are for continuous state feedback only. So-called reach control indices are introduced and developed which inform on the structural properties of the system which cause continuous state feedbacks to fail. A novel synthesis method is presented consisting of a subdivision algorithm based on these indices and an associated piecewise affine feedback. The method is shown to solve RCP for all cases in the literature where continuous state feedback fails, provided it is solvable by open loop control. Textbook examples of existing synthesis methods for RCP are provided. The motivation for studying RCP and its relevance to complex control specifications is illustrated using a biomedical application.
4

Reach Control on Simplices by Piecewise Affine Feedback

Ganness, Marcus 31 December 2010 (has links)
This thesis provides a deep study of the Reach Control Problem (RCP) for affine systems defined on simplices. Necessary conditions for solvability of the problem by open loop control are presented, improving upon the results in the literature which are for continuous state feedback only. So-called reach control indices are introduced and developed which inform on the structural properties of the system which cause continuous state feedbacks to fail. A novel synthesis method is presented consisting of a subdivision algorithm based on these indices and an associated piecewise affine feedback. The method is shown to solve RCP for all cases in the literature where continuous state feedback fails, provided it is solvable by open loop control. Textbook examples of existing synthesis methods for RCP are provided. The motivation for studying RCP and its relevance to complex control specifications is illustrated using a biomedical application.
5

Measures and LMIs for optimal control of piecewise-affine dynamical systems : Systematic feedback synthesis in continuous-time

Rasheed-Hilmy Abdalmoaty, Mohamed January 2012 (has links)
The project considers the class of deterministic continuous-time optimal control problems (OCPs) with piecewise-affine (PWA) vector fields and polynomial data. The OCP is relaxed as an infinite-dimensional linear program (LP) over space of occupation measures. The LP is then written as a particular instance of the generalized moment problem which is then approached by an asymptotically converging hierarchy of linear matrix inequality (LMI) relaxations. The relaxed dual of the original LP gives a polynomial approximation of the value function along optimal trajectories. Based on this polynomial approximation, a novel suboptimal policy is developed to construct a state feedback in a sample-and-hold manner. The results show that the suboptimal policy succeeds in providing a stabilizing suboptimal state feedback law that drives the system relatively close to the optimal trajectories and respects the given constraints.
6

Estimação de modelos afins por partes em espaço de estados

Rui, Rafael January 2016 (has links)
Esta tese foca no problema de estimação de estado e de identificação de parâametros para modelos afins por partes. Modelos afins por partes são obtidos quando o domínio do estado ou da entrada do sistema e particionado em regiões e, para cada região, um submodelo linear ou afim e utilizado para descrever a dinâmica do sistema. Propomos um algoritmo para estimação recursiva de estados e um algoritmo de identificação de parâmetros para uma classe de modelos afins por partes. Propomos um estimador de estados Bayesiano que utiliza o filtro de Kalman em cada um dos submodelos. Neste estimador, a função distribuição cumulativa e utilizada para calcular a distribuição a posteriori do estado assim como a probabilidade de cada submodelo. Já o método de identificação proposto utiliza o algoritmo EM (Expectation Maximization algorithm) para identificar os parâmetros do modelo. A função distribuição cumulativa e utilizada para calcular a probabilidade de cada submodelo a partir da medida do sistema. Em seguida, utilizamos o filtro de Kalman suavizado para estimar o estado e calcular uma função substituta da função likelihood. Tal função e então utilizada para identificar os parâmetros do modelo. O estimador proposto foi utilizado para estimar o estado do modelo não linear para vibrações causadas por folgas. Foram realizadas simulações, onde comparamos o método proposto ao filtro de Kalman estendido e o filtro de partículas. O algoritmo de identificação foi utilizado para identificar os parâmetros do modelo do jato JAS 39 Gripen, assim como, o modelos não linear de vibrações causadas por folgas. / This thesis focuses on the state estimation and parameter identi cation problems of piecewise a ne models. Piecewise a ne models are obtained when the state domain or the input domain are partitioned into regions and, for each region, a linear or a ne submodel is used to describe the system dynamics. We propose a recursive state estimation algorithm and a parameter identi cation algorithm to a class of piecewise a ne models. We propose a Bayesian state estimate which uses the Kalman lter in each submodel. In the this estimator, the cumulative distribution is used to compute the posterior distribution of the state as well as the probability of each submodel. On the other hand, the proposed identi cation method uses the Expectation Maximization (EM) algorithm to identify the model parameters. We use the cumulative distribution to compute the probability of each submodel based on the system measurements. Subsequently, we use the Kalman smoother to estimate the state and compute a surrogate function for the likelihood function. This function is used to estimate the model parameters. The proposed estimator was used to estimate the state of the nonlinear model for vibrations caused by clearances. Numerical simulations were performed, where we have compared the proposed method to the extended Kalman lter and the particle lter. The identi cation algorithm was used to identify the model parameters of the JAS 39 Gripen aircraft as well as the nonlinear model for vibrations caused by clearances.
7

Reach Control Problems on Polytopes

Helwa, Mohamed 07 August 2013 (has links)
As control systems become more integrated with high-end engineering systems as well as consumer products, they are expected to achieve specifications that may include logic rules, safety constraints, startup procedures, and so forth. Control design for such complex specifications is a relatively unexplored research area. One possible design approach is based on partitioning the state space into polytopic regions, and then formulating a certain control problem on each polytope, with the intention that the set of all controllers so obtained would collectively achieve the specification. The control problem which must be solved for each polytope is called the reach control problem, and it has been identified as turnkey to the further development of this approach. The reach control problem (RCP) is to find a state feedback to make the closed-loop trajectories of an affine (or linear) control system defined on a polytope reach and exit a prescribed facet of the polytope in finite time. This dissertation studies a number of aspects of the reach control problem, and it uses tools from convex analysis, nonsmooth analysis, and computational geometry for this study. The dissertation has three main themes. First, we formulate and solve a variant of RCP in which trajectories exit the polytope in a monotonic sense; this provides a triangulation-independent solution of RCP. Second, we develop a Lyapunov-like theory for verifying if RCP is solved using a given candidate controller. This involves the introduction of the notion of generalized flow functions, a LaSalle Principle for RCP, and several converse theorems on existence of generalized flow functions. Third, we study the relationship between affine feedbacks and continuous state feedbacks for RCP on simplices. Although the two feedback classes have been shown to be equivalent under an assumption on the triangulation of the state space, we show by a counterexample that the equivalence is no longer true under arbitrary triangulations. Then we provide for single-input systems a constructive method for the synthesis of multi-affine feedbacks for RCP on simplices.
8

Reach Control Problems on Polytopes

Helwa, Mohamed 07 August 2013 (has links)
As control systems become more integrated with high-end engineering systems as well as consumer products, they are expected to achieve specifications that may include logic rules, safety constraints, startup procedures, and so forth. Control design for such complex specifications is a relatively unexplored research area. One possible design approach is based on partitioning the state space into polytopic regions, and then formulating a certain control problem on each polytope, with the intention that the set of all controllers so obtained would collectively achieve the specification. The control problem which must be solved for each polytope is called the reach control problem, and it has been identified as turnkey to the further development of this approach. The reach control problem (RCP) is to find a state feedback to make the closed-loop trajectories of an affine (or linear) control system defined on a polytope reach and exit a prescribed facet of the polytope in finite time. This dissertation studies a number of aspects of the reach control problem, and it uses tools from convex analysis, nonsmooth analysis, and computational geometry for this study. The dissertation has three main themes. First, we formulate and solve a variant of RCP in which trajectories exit the polytope in a monotonic sense; this provides a triangulation-independent solution of RCP. Second, we develop a Lyapunov-like theory for verifying if RCP is solved using a given candidate controller. This involves the introduction of the notion of generalized flow functions, a LaSalle Principle for RCP, and several converse theorems on existence of generalized flow functions. Third, we study the relationship between affine feedbacks and continuous state feedbacks for RCP on simplices. Although the two feedback classes have been shown to be equivalent under an assumption on the triangulation of the state space, we show by a counterexample that the equivalence is no longer true under arbitrary triangulations. Then we provide for single-input systems a constructive method for the synthesis of multi-affine feedbacks for RCP on simplices.
9

Estimação de modelos afins por partes em espaço de estados

Rui, Rafael January 2016 (has links)
Esta tese foca no problema de estimação de estado e de identificação de parâametros para modelos afins por partes. Modelos afins por partes são obtidos quando o domínio do estado ou da entrada do sistema e particionado em regiões e, para cada região, um submodelo linear ou afim e utilizado para descrever a dinâmica do sistema. Propomos um algoritmo para estimação recursiva de estados e um algoritmo de identificação de parâmetros para uma classe de modelos afins por partes. Propomos um estimador de estados Bayesiano que utiliza o filtro de Kalman em cada um dos submodelos. Neste estimador, a função distribuição cumulativa e utilizada para calcular a distribuição a posteriori do estado assim como a probabilidade de cada submodelo. Já o método de identificação proposto utiliza o algoritmo EM (Expectation Maximization algorithm) para identificar os parâmetros do modelo. A função distribuição cumulativa e utilizada para calcular a probabilidade de cada submodelo a partir da medida do sistema. Em seguida, utilizamos o filtro de Kalman suavizado para estimar o estado e calcular uma função substituta da função likelihood. Tal função e então utilizada para identificar os parâmetros do modelo. O estimador proposto foi utilizado para estimar o estado do modelo não linear para vibrações causadas por folgas. Foram realizadas simulações, onde comparamos o método proposto ao filtro de Kalman estendido e o filtro de partículas. O algoritmo de identificação foi utilizado para identificar os parâmetros do modelo do jato JAS 39 Gripen, assim como, o modelos não linear de vibrações causadas por folgas. / This thesis focuses on the state estimation and parameter identi cation problems of piecewise a ne models. Piecewise a ne models are obtained when the state domain or the input domain are partitioned into regions and, for each region, a linear or a ne submodel is used to describe the system dynamics. We propose a recursive state estimation algorithm and a parameter identi cation algorithm to a class of piecewise a ne models. We propose a Bayesian state estimate which uses the Kalman lter in each submodel. In the this estimator, the cumulative distribution is used to compute the posterior distribution of the state as well as the probability of each submodel. On the other hand, the proposed identi cation method uses the Expectation Maximization (EM) algorithm to identify the model parameters. We use the cumulative distribution to compute the probability of each submodel based on the system measurements. Subsequently, we use the Kalman smoother to estimate the state and compute a surrogate function for the likelihood function. This function is used to estimate the model parameters. The proposed estimator was used to estimate the state of the nonlinear model for vibrations caused by clearances. Numerical simulations were performed, where we have compared the proposed method to the extended Kalman lter and the particle lter. The identi cation algorithm was used to identify the model parameters of the JAS 39 Gripen aircraft as well as the nonlinear model for vibrations caused by clearances.
10

Estimação de modelos afins por partes em espaço de estados

Rui, Rafael January 2016 (has links)
Esta tese foca no problema de estimação de estado e de identificação de parâametros para modelos afins por partes. Modelos afins por partes são obtidos quando o domínio do estado ou da entrada do sistema e particionado em regiões e, para cada região, um submodelo linear ou afim e utilizado para descrever a dinâmica do sistema. Propomos um algoritmo para estimação recursiva de estados e um algoritmo de identificação de parâmetros para uma classe de modelos afins por partes. Propomos um estimador de estados Bayesiano que utiliza o filtro de Kalman em cada um dos submodelos. Neste estimador, a função distribuição cumulativa e utilizada para calcular a distribuição a posteriori do estado assim como a probabilidade de cada submodelo. Já o método de identificação proposto utiliza o algoritmo EM (Expectation Maximization algorithm) para identificar os parâmetros do modelo. A função distribuição cumulativa e utilizada para calcular a probabilidade de cada submodelo a partir da medida do sistema. Em seguida, utilizamos o filtro de Kalman suavizado para estimar o estado e calcular uma função substituta da função likelihood. Tal função e então utilizada para identificar os parâmetros do modelo. O estimador proposto foi utilizado para estimar o estado do modelo não linear para vibrações causadas por folgas. Foram realizadas simulações, onde comparamos o método proposto ao filtro de Kalman estendido e o filtro de partículas. O algoritmo de identificação foi utilizado para identificar os parâmetros do modelo do jato JAS 39 Gripen, assim como, o modelos não linear de vibrações causadas por folgas. / This thesis focuses on the state estimation and parameter identi cation problems of piecewise a ne models. Piecewise a ne models are obtained when the state domain or the input domain are partitioned into regions and, for each region, a linear or a ne submodel is used to describe the system dynamics. We propose a recursive state estimation algorithm and a parameter identi cation algorithm to a class of piecewise a ne models. We propose a Bayesian state estimate which uses the Kalman lter in each submodel. In the this estimator, the cumulative distribution is used to compute the posterior distribution of the state as well as the probability of each submodel. On the other hand, the proposed identi cation method uses the Expectation Maximization (EM) algorithm to identify the model parameters. We use the cumulative distribution to compute the probability of each submodel based on the system measurements. Subsequently, we use the Kalman smoother to estimate the state and compute a surrogate function for the likelihood function. This function is used to estimate the model parameters. The proposed estimator was used to estimate the state of the nonlinear model for vibrations caused by clearances. Numerical simulations were performed, where we have compared the proposed method to the extended Kalman lter and the particle lter. The identi cation algorithm was used to identify the model parameters of the JAS 39 Gripen aircraft as well as the nonlinear model for vibrations caused by clearances.

Page generated in 0.0375 seconds