Spelling suggestions: "subject:"piecewisedefined"" "subject:"piecewiselinear""
11 |
Commande et stabilité des systèmes commutés : Application Fluid PowerAmeur, Omar 12 November 2015 (has links)
Ces travaux portent sur la commande et l’analyse de la stabilité d’un système électropneumatique constitué d’un axe linéaire commandé par deux servodistributeurs régulant le débit massique entrant dans chaque chambre de l’actionneur. La problématique générale est motivée par l’apparition d’un phénomène de redécollage sur ce système électropneumatique difficilement pris en compte par les études actuelles en automatique. Ce problème, rencontré depuis de nombreuses années, concerne toutes les commandes linéaires et non linéaires mono et multidimensionnelles étudiées au laboratoire. Il se traduit par des mouvements saccadés du vérin au voisinage de l’équilibre. Ce phénomène est dû à la présence de frottements secs et aux dynamiques des pressions dans les chambres pneumatiques de l’actionneur, qui continuent à évoluer (intégrer le débit massique entrant délivré par les servodistributeurs), même après l’équilibre mécanique. La première partie de ce mémoire propose une commande non linéaire commutée afin d’éviter le phénomène de redécollage de l’actionneur électropneumatique notamment vis-à-vis des variations de frottements secs qui peuvent à tout moment causer ce phénomène. Cette technique est finalement mise en œuvre et son efficacité est constatée. La plus grande partie de ce mémoire traite l’analyse de l’actionneur électropneumatique avec sa loi de commande commutée. La présence de frottements secs et l’application d’une loi de commande commutée nous a amené à concilier une démarche d’analyse de stabilité, en considérant une classe de systèmes commutés appelée systèmes affines par morceaux. La principale difficulté de cette démarche réside dans l’obtention de fonctions de Lyapunov adéquates, qui se transforme en un problème d’optimisation sous contraintes LMI (Linear Matrix Inequality) en utilisant la S-procédure. Afin d’analyser la stabilité d’un système PWA (PieceWise Affine), la première démarche proposée permet le calcul d’une fonction de Lyapunov quadratique par morceaux sous la forme d’un problème d’optimisation sous contraintes LMI, en imposant des conditions suffisantes de stabilité. Ces dernières permettent, contrairement aux méthodes classiques, d’assurer la convergence de trajectoires d’état non pas vers un point d’équilibre, mais vers un ensemble des points d’équilibre d’un système PWA. L’approche proposée permet aussi l’étude de la robustesse vis-à-vis des variations paramétriques dans le système. Nous proposons aussi une deuxième approche pour la construction d’un type de fonctions de Lyapunov dites polynomiales par morceaux, via l’utilisation des "sum of square" et de la "power transformation", afin d’analyser la stabilité d’un ensemble de points d’équilibre d’un système PWA, en présence de phénomènes de glissement et de variations paramétriques. Cette approche propose des conditions suffisantes moins conservatives que celles imposées par les fonctions de Lyapunov quadratique par morceaux. En effet, sur des exemples de systèmes PWA présentant de dynamiques discontinues sur les frontières entre les cellules, pouvant générer à tout moment des phénomènes de glissement, ces dernières s’avèrent inefficaces et ne permettent pas d’assurer la stabilité des systèmes PWA en présence de ces phénomènes. Par conséquent, les résultats sur la fonction de Lyapunov quadratique par morceaux sont étendus pour pouvoir calculer des fonctions de Lyapunov polynomiales par morceaux d’ordre supérieur, en résolvant un problème d’optimisation sous contraintes LMI. Ces dernières permettent de garantir des conditions plus générales et moins conservatives par rapport à celles développées dans la littérature. Ces deux approches ont été appliquées afin d’analyser la stabilité de l’ensemble des points d’équilibre du système électropneumatique, en considérant à la fois un modèle de frottements sous la forme d’une saturation et un autre sous la forme d’un relais présentant une dynamique discontinue. [...] / This work focuses on the control and stability analysis of an electro-pneumatic system, i.e. a linear pneumatic cylinder controlled by two servo valves regulating the mass flow entering each chamber of the actuator. The general problem is motivated by the appearance of stick-slip on the electro-pneumatic system, hardly taken into account by the current studies in automatic control. This problem, encountered throughout the years, concerns all mono- and multidimensional linear and non-linear controls systems studied at the laboratory. In pneumatic cylinders, the phenomenon consists in a displacement of the rod a while after it has come to a rest ; this is due to the fact that the force acting on the rod initially becomes smaller that the threshold which is necessary for a motion, and then this threshold is overcome later on. In this case, stick-slip is caused by the presence of dry friction and by the pressure dynamics in the chambers, which continue to evolve (integrating the net incoming mass flow from the servovalves) even after the rod has stopped. The first part of this thesis proposes a nonlinear switching control law in order to avoid stick-slip on pneumatic cylinder, taking into account with the variations of dry friction that may occur at any time causing this phenomenon. This technique is implemented and its effectiveness is recognized. The greatest part of this thesis deals with the stability analysis of the pneumatic cylinder with its switched control law. The presence of dry friction and the application of a switched control law requires an appropriate method for approaching the stability analysis ; this method is based on considering the closed-loop system as belonging to a class of switched systems called piecewise affine systems (PWA). The main difficulty in this approach lies in obtaining adequate Lyapunov functions for proving stability, which turns into an optimization problem under LMI constraints (Linear Matrix Inequality) using the S-procedure. In order to analyze the stability of a PWA system, a first method is proposed allowing the computation of a piecewise quadratic Lyapunov function through an optimization problem under LMI constraints. The methods takes into account, in contrast to conventional methods, that the states might converge not to a single point but to a set of equilibrium points. The proposed approach allows also the study of robustness with respect to parametric variations in the system. A second method is also proposed for the construction of a type of Lyapunov functions called piecewise polynomial, using the “sum of squares” and “power transformation” techniques. This approach proposes less conservative sufficient conditions than those imposed by the piecewise quadratic Lyapunov functions, yielding a more succesfull stability test when for PWA systems featuring sliding modes and parametric variations. In fact, on PWA systems with discontinuous dynamics (which can generate sliding phenomena), piecewise quadratic Lyapunov functions might prove ineffective to prove the stability. Therefore, the results on piecewise quadratic Lyapunov functions are extended in order to compute piecewise polynomial Lyapunov functions of higher order, by solving an optimization problem under LMI constraints. These functions are more general and allow less conservative conditions compared to those formerly developed in the literature. Both of these methods have been applied to the stability analysis of the set of equilibrium points of the pneumatic cylinder, considering first a friction model in saturation form and then a model in relay form with a discontinuous dynamics. The application of the methods is successful, i.e. the robust stability is proven under dry friction threshold variations, with possibility of sliding modes.
|
12 |
De l'identification des systèmes (hybrides et à sortie binaire) à l'extraction de motifs / From system Identification (hybride system and system with binary output) to pattern extractionGoudjil, Abdelhak 07 December 2017 (has links)
Les travaux de cette thèse portent sur l'identification des systèmes et l'extraction de motifs à partir de données. Dans le cadre de l'identification des systèmes, nous nous intéressons plus précisément à l'identification des systèmes dynamiques hybrides et l'identification des systèmes dynamiques linéaires ayant une sortie binaire. Deux classes très populaires des systèmes hybrides sont les systèmes linéaires à commutations et les systèmes affines par morceaux. Nous faisons tout d'abord un état de l'art sur les méthodes d'identification de ces deux classes. Nous proposons ensuite un algorithme basé sur une méthode d'identification de type OBE "Outer Bounding Ellipsoid" pour l'identification en temps réel des systèmes à commutations soumis à un bruit borné. Nous présentons ensuite plusieurs extensions de l'algorithme soit pour l'identification des systèmes affines par morceaux, l'identification des systèmes à commutations décrits par un modèle du type erreur de sortie et l'identification des systèmes MIMO à commutations. Nous abordons ensuite le problème d'identification des systèmes linéaires ayant une sortie binaire en introduisant un point de vue original consiste à formuler le problème d'identification comme un problème de classification. Ceci permet de proposer deux algorithmes d'identification basés sur l'utilisation des SVMs. Le premier algorithme est dédié à l'identification des systèmes à temps discret et le deuxième algorithme est dédié à l'identification des systèmes à temps continu. Dans le cadre de l'extraction de motifs, nous présentons dans un premier temps un état de l'art sur les algorithmes d'extraction de motifs et sur les techniques de la classification non supervisée. Ensuite, nous proposons un algorithme d'extraction de motifs à partir des données basé sur des techniques de classification non supervisée. / In this thesis, we deal with the identification of systems and the extraction of patterns from data. In the context of system identification, we focus precisely on the identification of hybrid systems and the identification of linear systems using binary sensors. Two very popular classes of hybrid systems are switched linear systems and piecewise affine systems. First, we give an overview of the different approaches available in the literature for the identification of these two classes. Then, we propose a new real-time identification algorithm for switched linear systems, it's based on an Outer Bounding Ellipsoid (OBE) type algorithm suitable for system identification with bounded noise. We then present several extensions of the algorithm either for the identification of piecewise affine systems, the identification of switched linear systems described by an output error model and the identification of MIMO switched linear systems. After this, we address the problem of the identification of linear systems using binary sensors by introducing an original point of view. We formulate the identification problem as a classification problem. This formulation allows the use of supervised learning algorithms such as Support Vector Machines (SVMs) for the identification of discrete time systems and the identification of continuous-time systems using binary sensors. In the context of pattern extraction, we first present an overview of the different pattern extraction algorithms and clustering techniques available in the literature. Next, we propose an algorithm for extracting patterns from data based on clustering techniques.
|
13 |
Explicit robust constrained control for linear systems : analysis, implementation and design based on optimization / Commande robuste, explicite pour des systemes linéaires : analyse, implémentation et synthèse fondée sur l'optimalitéNguyen, Ngoc Anh 26 November 2015 (has links)
Les lois de commande affines par morceaux ont attiré une grande attention de la communauté d'automatique de contrôle grâce à leur pertinence pour des systèmes contraints, systèmes hybrides; également pour l'approximation de commandes nonlinéaires. Pourtant, leur mise en oeuvre est soumise à quelques difficultés. Motivé par l'intérêt à cette classe de commandes, cette thèse porte sur leur analyse, mise en oeuvre et synthèse.La première partie de cette thèse a pour but le calcul de la marge de robustesse et de la marge de fragilité pour une loi de commande affine par morceaux donnée et un système linéaire discret. Plus précisément, la marge de robustesse est définie comme l'ensemble des systèmes linéaires à paramètres variants que la loi de commande donnée garde les trajectoires dans de la région faisable. D'ailleurs, la marge de fragilité comprend toutes les variations des coefficients de la commande donnée telle que l'invariance de la région faisable soit encore garantie. Il est montré que si la région faisable donnée est un polytope, ces marges sont aussi des polytopes.La deuxième partie de ce manuscrit est consacrée au problème de l'optimalité inverse pour la classe des fonctions affines par morceaux. C'est-à-dire, l'objective est de définir un problème d'optimisation pour lequel la solution optimale est équivalente à la fonction affine par morceaux donnée. La méthodologie est fondée sur le convex lifting, i.e., un variable auxiliaire, scalaire, qui permet de définir un ensemble convex à partir de la partition d'état de la fonction affine par morceaux donnée. Il est montré que si la fonction affine par morceaux donnée est continue, la solution optimale de ce problème redéfini sera unique. Par contre, si la continuité n'est pas satisfaite, cette fonction affine par morceaux sera une solution optimale parmi les autres du problème redéfini.En ce qui concerne l’application dans la commande prédictive, il sera montré que n'importe quelle loi de commande affine par morceaux continue peut être obtenue par un autre problème de commande prédictive avec l'horizon de prédiction au plus égal à 2. A côté de cet aspect théorique, ce résultat sera utile pour faciliter la mise en oeuvre des lois de commandes affines par morceaux en évitant l'enregistrement de la partition de l'espace d'état. Dans la dernière partie de ce rapport, une famille de convex liftings servira comme des fonctions de Lyapunov. En conséquence, ce "convex lifting" sera déployé pour synthétiser des lois de commande robustes pour des systèmes linéaires incertains, également en présence de perturbations additives bornées. Des lois implicites et explicites seront obtenues en même temps. Cette méthode permet de garantir la faisabilité récursive et la stabilité robuste. Cependant, cette fonction de Lyapunov est limitée à l'ensemble λ −contractive maximal avec une constante scalaire 0 ≤ λ < 1 qui est plus petit que l'ensemble contrôlable maximal. Pour cette raison, une extension de cette méthode pour l'ensemble contrôlable de N − pas, sera présentée. Cette méthode est fondée sur des convex liftings en cascade où une variable auxiliaire sera utilisée pour servir comme une fonction de Lyapunov. Plus précisément, cette variable est non-négative, strictement décroissante pour les N premiers pas et égale toujours à 0 − après. Par conséquent, la stabilité robuste est garantie. / Piecewise affine (PWA) feedback control laws have received significant attention due to their relevance for the control of constrained systems, hybrid systems; equally for the approximation of nonlinear control. However, they are associated with serious implementation issues. Motivated from the interest in this class of particular controllers, this thesis is mostly related to their analysis and design.The first part of this thesis aims to compute the robustness and fragility margins for a given PWA control law and a linear discrete-time system. More precisely, the robustness margin is defined as the set of linear time-varying systems such that the given PWA control law keeps the trajectories inside a given feasible set. On a different perspective, the fragility margin contains all the admissible variations of the control law coefficients such that the positive invariance of the given feasible set is still guaranteed. It will be shown that if the given feasible set is a polytope, then so are these robustness/fragility margins.The second part of this thesis focuses on inverse optimality problem for the class of PWA controllers. Namely, the goal is to construct an optimization problem whose optimal solution is equivalent to the given PWA function. The methodology is based on emph convex lifting: an auxiliary 1− dimensional variable which enhances the convexity characterization into recovered optimization problem. Accordingly, if the given PWA function is continuous, the optimal solution to this reconstructed optimization problem will be shown to be unique. Otherwise, if the continuity of this given PWA function is not fulfilled, this function will be shown to be one optimal solution to the recovered problem.In view of applications in linear model predictive control (MPC), it will be shown that any continuous PWA control law can be obtained by a linear MPC problem with the prediction horizon at most equal to 2 prediction steps. Aside from the theoretical meaning, this result can also be of help to facilitate implementation of PWA control laws by avoiding storing state space partition. Another utility of convex liftings will be shown in the last part of this thesis to be a control Lyapunov function. Accordingly, this convex lifting will be deployed in the so-called robust control design based on convex liftings for linear system affected by bounded additive disturbances and polytopic uncertainties. Both implicit and explicit controllers can be obtained. This method can also guarantee the recursive feasibility and robust stability. However, this control Lyapunov function is only defined over the maximal λ −contractive set for a given 0 ≤ λ < 1 which is known to be smaller than the maximal controllable set. Therefore, an extension of the above method to the N-steps controllable set will be presented. This method is based on a cascade of convex liftings where an auxiliary variable will be used to emulate a Lyapunov function. Namely, this variable will be shown to be non-negative, to strictly decrease for N first steps and to stay at 0 afterwards. Accordingly, robust stability is sought.
|
14 |
A piecewise-affine approach to nonlinear performance / Une approche affine par morceaux de la performance non-linéaireWaitman, Sergio 25 July 2018 (has links)
Lorsqu’on fait face à des systèmes non linéaires, les notions classiques de stabilité ne suffisent pas à garantir un comportement approprié vis-à-vis de problématiques telles que le suivi de trajectoires, la synchronisation et la conception d’observateurs. La stabilité incrémentale a été proposée en tant qu’outil permettant de traiter de tels problèmes et de garantir que le système présente des comportements qualitatifs pertinents. Cependant, comme c’est souvent le cas avec les systèmes non linéaires, la complexité de l’analyse conduit les ingénieurs à rechercher des relaxations, ce qui introduit du conservatisme. Dans cette thèse, nous nous intéressons à la stabilité incrémentale d’une classe spécifique de systèmes, à savoir les systèmes affines par morceaux, qui pourraient fournir un outil avantageux pour aborder la stabilité incrémentale de systèmes dynamiques plus génériques.Les systèmes affines par morceaux ont un espace d’états partitionné, et sa dynamique dans chaque région est régie par une équation différentielle affine. Ils peuvent représenter des systèmes contenant des non linéarités affines par morceaux, ainsi que servir comme des approximations de systèmes non linéaires plus génériques. Ce qui est plus important, leur description est relativement proche de celle des systèmes linéaires, ce qui permet d’obtenir des conditions d’analyse exprimées comme des inégalités matricielles linéaires qui peuvent être traités numériquement de façon efficace par des solveurs existants.Dans la première partie de ce document de thèse, nous passons en revue la littérature sur l’analyse des systèmes affines par morceaux en utilisant des techniques de Lyapunov et la dissipativité. Nous proposons ensuite de nouvelles conditions pour l’analyse du gain L2 incrémental et la stabilité asymptotique incrémentale des systèmes affines par morceaux exprimés en tant qu’inégalités matricielles linéaires. Ces conditions sont montrées être moins conservatives que les résultats précédents et sont illustrées par des exemples numériques.Dans la deuxième partie, nous considérons le cas des systèmes affines par morceaux incertains représentés comme l’interconnexion entre un système nominal et un bloc d’incertitude structuré. En utilisant la théorie de la séparation des graphes, nous proposons des conditions qui étendent le cadre des contraintes quadratiques intégrales afin de considérer le cas où le système nominal est affine par morceaux, à la fois dans les cas non incrémental et incrémental. Via la théorie de la dissipativité, ces conditions sont ensuite exprimées en tant qu’inégalités matricielles linéaires.Finalement, la troisième partie de ce document de thèse est consacrée à l’analyse de systèmes non linéaires de Lur’e incertains. Nous développons une nouvelle technique d’approximation permettant de réécrire ces systèmes de façon équivalente comme des systèmes affines par morceaux incertains connectés avec l’erreur d’approximation. L’approche proposée garantit que l’erreur d’approximation est Lipschitz continue avec la garantie d’une borne supérieure prédéterminée sur la constante de Lipschitz. Cela nous permet d’utiliser les techniques susmentionnées pour analyser des classes plus génériques de systèmes non linéaires. / When dealing with nonlinear systems, regular notions of stability are not enough to ensure an appropriate behavior when dealing with problems such as tracking, synchronization and observer design. Incremental stability has been proposed as a tool to deal with such problems and ensure that the system presents relevant qualitative behavior. However, as it is often the case with nonlinear systems, the complexity of the analysis leads engineers to search for relaxations, which introduce conservatism. In this thesis, we focus on the incremental stability of a specific class of systems, namely piecewise-affine systems, which could provide a valuable tool for approaching the incremental stability of more general dynamical systems.Piecewise-affine systems have a partitioned state space, in each region of which the dynamics are governed by an affine differential equation. They can represent systems containing piecewise-affine nonlinearities, as well as serve as approximations of more general nonlinear systems. More importantly, their description is relatively close to that of linear systems, allowing us to obtain analysis conditions expressed as linear matrix inequalities that can be efficiently handled numerically by existing solvers.In the first part of this memoir, we review the literature on the analysis of piecewise-affine systems using Lyapunov and dissipativity techniques. We then propose new conditions for the analysis of incremental L2-gain and incremental asymptotic stability of piecewise-affine systems expressed as linear matrix inequalities. These conditions are shown to be less conservative than previous results and illustrated through numerical examples.In the second part, we consider the case of uncertain piecewise-affine systems represented as the interconnection between a nominal system and a structured uncertainty block. Using graph separation theory, we propose conditions that extend the framework of integral quadratic constraints to consider the case when the nominal system is piecewise affine, both in the non-incremental and incremental cases. Through dissipativity theory, these conditions are then expressed as linear matrix inequalities.Finally, the third part of this memoir is devoted to the analysis of uncertain Lur’e-type nonlinear systems. We develop a new approximation technique allowing to equivalently rewrite such systems as uncertain piecewise-affine systems connected with the approximation error. The proposed approach ensures that the approximation error is Lipschitz continuous with a guaranteed pre-specified upper bound on the Lipschitz constant. This enables us to use the aforementioned techniques to analyze more general classes of nonlinear systems.
|
15 |
Commande prédictive des systèmes hybrides et application à la commande de systèmes en électronique de puissance. / Predictive control of hybrid systems and its application to the control of power electronics systemsVlad, Cristina 21 March 2013 (has links)
Actuellement la nécessité des systèmes d’alimentation d’énergie, capables d’assurer un fonctionnement stable dans des domaines de fonctionnement assez larges avec des bonnes performances dynamiques (rapidité du système, variations limitées de la tension de sortie en réponse aux perturbations de charge ou de tension d’alimentation), devient de plus en plus importante. De ce fait, cette thèse est orientée sur la commande des convertisseurs de puissance DC-DC représentés par des modèles hybrides.En tenant compte de la structure variable de ces systèmes à commutation, un modèle hybride permet de décrire plus précisément le comportement dynamique d’un convertisseur dans son domaine de fonctionnement. Dans cette optique, l’approximation PWA est utilisée afin de modéliser les convertisseurs DC-DC. A partir des modèles hybrides développés, on s’est intéressé à la stabilisation des convertisseurs au moyen des correcteurs à gains commutés élaborés sur la base de fonctions de Lyapunov PWQ, et à l’implantation d’une commande prédictive explicite, en considérant des contraintes sur l’entrée de commande. La méthode de modélisation et les stratégies de commande proposées ont été appliquées sur deux topologies : un convertisseur buck, afin de mieux maîtriser le réglage des correcteurs et un convertisseur flyback avec filtre d’entrée. Cette dernière topologie nous a permis de répondre aux difficultés du point de vue de la commande (comportement à déphasage non-minimal) rencontrées dans la majorité des convertisseurs DC-DC. Les performances des commandes élaborées ont été validées en simulation sur les topologies considérées et expérimentalement sur une maquette du convertisseur buck. / Lately, power supply systems, guaranteeing the global stability for large enough operation ranges with good dynamic performances (small settling time, bounded overshoot of the output voltage in the presence of load or supply voltage variations), are strongly needed. Therefore, this thesis deals with control problems of DC-DC power converters represented by hybrid models.Considering the variable structure of these switched systems, a hybrid model describes more precisely the converter’s dynamics in its operating domain. From this perspective, a PWA (piecewise affine) approximation is used in order to model the DC-DC converters. Based on the developed hybrid models, first we have designed a stable piecewise linear state-feedback controller using piecewise quadratic (PWQ) Lyapunov functions, and secondly, we have implemented an explicit predictive control law taking into account constraints on the control input. The hybrid modeling technique and the proposed control strategies were applied on two different topologies of converters: a buck converter, in order to have a thorough knowledge of the controllers’ tuning, and a flyback converter with an input filter. This last topology, allowed us to manage different control problems (non-minimum phase behavior) encountered in the majority of topologies of DC-DC power converters. The controllers’ performances were validated in simulation on both considered topologies and also experimentally on buck converter.
|
16 |
Predictive analysis of dynamical systems: combining discrete and continuous formalismsChaves, Madalena 24 October 2013 (has links) (PDF)
The mathematical analysis of dynamical systems covers a wide range of challenging problems related to the time evolution, transient and asymptotic behavior, or regulation and control of physical systems. A large part of my work has been motivated by new mathematical questions arising from biological systems, especially signaling and genetic regulatory networks, where the classical methods usually don't directly apply. Problems include parameter estimation, robustness of the system, model reduction, or model assembly from smaller modules, or control of a system towards a desired state. Although many different formalisms and methodologies can be used to study these problems, in the past decade my work has focused on discrete and hybrid modeling frameworks with the goal of developing intuitive, computationally amenable, and mathematically rigorous, methods of analysis. Discrete (and, in particular, Boolean) models involve a high degree of abstraction and provide a qualitative description of the systems' dynamics. Such models are often suitable to represent the known interactions in gene regulatory networks and their advantage is that a large range of theoretical analysis tools are available using, for instance, graph theoretical concepts. Hybrid (piecewise affine) models have discontinuous vector fields but provide a continuous and more quantitative description of the dynamics. These systems can be analytically studied in each region of an appropriate partition of the state space, and the full solution given as a concatenation of the solutions in each region. Here, I will introduce the two formalisms and then, using several examples, illustrate how a combination of different formalisms permits comparison of results, as well as gaining quantitative knowledge and predictive power on a biological system, through the use of complementary mathematical methods.
|
Page generated in 0.0488 seconds