• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Embedding of bulk piezoelectric structures in low temperature co-fired ceramic

Sobocinski, M. (Maciej) 09 December 2014 (has links)
Abstract It has been over a century since the Curie brothers discovered the piezoelectric effect. Since then our knowledge about this phenomena has been constantly growing, accompanied by a vast increase in its applications. Modern piezoelectric devices, especially those meant for use in personal equipment, can often have complicated shapes and electric circuits; therefore, a suitable and cost effective packaging method is needed. The recent introduction of self-constrained Low Temperature Co-fired Ceramic (LTCC) characterized by virtually no planar shrinkage has pushed the limits of this technology a step further. The practical lack of dimension change between “green” state and sintered ceramic has not only improved the design of multilayer smart packages but also allowed the embedding of other bulk materials within the LTCC and their co-firing in one sintering process. This thesis introduces a novel method of seamlessly embedding piezoelectric bulk structures in LTCC by co-firing or bonding with adhesive. Special attention is paid to the multistage lamination and post-firing poling of the piezoelectric ceramics. Examples of several structures from the main areas of piezoelectric applications are presented as proof of successful implementation of the new technique in the existing production environment. The performance of the structures is investigated and compared to structures manufactured using other methods. Integration of bulk piezoelectric structures through co-firing is a new technique with a wide area of applications, suitable for mass production using existing process flow. / Tiivistelmä Curien veljekset havaitsivat pietsosähköisen ilmiön jo yli sata vuotta sitten. Ilmiöön liittyvä tutkimustieto ja erityisesti siihen perustuvien sovellusten määrä on nykyisin valtava. Uusissa pietsosähköisissä komponenteissa ja varsinkin niissä, jotka on tarkoitettu henkilökohtaisissa laitteissa käytettäviksi, muodot samoinkuin elektroniikapiirit voivat olla monimutkaisia. Siksi tarvitaan tarkoituksenmukaista ja hinnaltaan edullista laitteen pakkausmenetelmää. Hiljattain kehitetyt itseohjautuvat matalan lämpötilan yhteissintattavat keraamit (LTCC), joiden planaarinen kutistuma on lähes olematon, ovat lisänneet LTCC-teknologian sovellusmahdollisuuksia. Muotoon valmistetun sintraamattoman ja lopullisen sintratun keraamin dimensioiden yhtäsuuruus ei ole ainoastaan parantanut älykkäiden monikerrospakkausten suunnittelua, vaan mahdollistanut myös erilaisten materiaalien ja komponenttien upottamisen LTCC-rakenteisiin ja niiden yhteissintrauksen. Väitöstyössä esitetään uusi menetelmä pietsosähköisten bulkrakenteiden upottamiseksi saumattomasti LTCC-rakenteisiin yhteissintrauksella tai liimaliitoksella. Erityistä huomiota on kiinnitetty monivaiheiseen laminointiin ja sintrauksen jälkeiseen pietsosähköisten keraamien polarisointiin. Työssä on esitetty esimerkkejä useista rakenteista pietsosähköisten sovellusten pääalueilta osoituksena uuden tekniikan onnistuneesta käyttöönottamisesta nykyisessä valmistusympäristössä. Tutkittujen uusien rakenteiden ja muilla menetelmillä valmistettujen rakenteiden ominaisuuksia on verrattu keskenään. Pietsosähköisten bulkrakenteiden integroiminen yhteissintrauksella on uusi tekniikka, joka mahdollistaa lukuisia sovelluksia ja soveltuu massatuotantoon olemassa olevilla prosseintilaitteistoilla.
2

Energy harvesting from walking using piezoelectric cymbal and diaphragm type structures

Palosaari, J. (Jaakko) 01 December 2017 (has links)
Abstract Many electrical devices already surround us in our everyday life. Some devices monitor car performance and traffic while others exist in handheld devices used by the general public. Electrical devices also control manufacturing processes and protect workers from exposure to hazardous working environment. All these devices require electricity to operate. This exponential growth of low power electronic devices in industry, healthcare, military, transportation and in portable personal devices has led to an urgent need for system integrated energy sources. Many energy harvesting technologies have been developed to serve as a power source in close proximity to the electrical device itself. Solar and magnetic energy harvesters are the most common solutions when conditions are suitable. A more recent technique, called piezoelectric energy harvesting, has raised significant interest among scientists and in industry. Through piezoelectric (ceramic) material mechanical energy can be harvested and converted to electrical energy. This method requires accurate analysis of the kinetic energy experienced by the piezoelectric material so that the mechanics can be suitably designed. At the same time the mechanical design has to protect the piezoelectric material from intense forces that might cause cracks, while still transmitting the kinetic energy efficiently. These requirements usually mean a specific energy harvest design for each ambient energy source at hand. This thesis is focused on energy harvesting from low frequency compressions using piezoelectric ceramic materials. The objective was to manufacture, measure and implement structures that could sustain the forces experienced under the heel of a foot and maximize the harvested energy amount and efficiency. Two different construction designs were developed and optimised with an iterative process. The kinetic energy impulse under the heel part of the foot was studied by measuring the electrical output of the harvester during walking and then analysed with modelling software. The results were used to create a walking profile for a computer controlled piston to study the input energy phase, speed and force influence on the amount of the harvested energy and the efficiency of the harvesting process. Finally, the functionality of the concept was tested in a real environment with an energy harvester inserted inside a running shoe. The developed harvester showed the highest energy density reported in this frequency region. / Tiivistelmä Monet elektroniset laitteet ympäröivät meitä jokapäiväisessä elämässä. Ne tarkkailevat auton toimintaa tai liikennettä ja toiset toimivat aina mukana kulkevissa kannettavissa laitteissa. Töissä ne valvovat valmistusprosesseja tai varoittavat työntekijöitä vaarallisista työolosuhteista. Kaikki nämä laitteet tarvitsevat sähköä toimiakseen. Pienitehoisten elektronisten laitteiden eksponentiaalinen kasvu teollisuudessa, terveyssektorilla, puolustusteollisuudessa, kulkuneuvoissa sekä kannettavassa kulutuselektroniikassa on johtanut suureen tarpeeseen kehittää järjestelmiin integroituja energialähteitä. Monia energiankeräystekniikoita on kehitetty toimimaan elektronisten laitteiden läheisyydessä. Aurinkopaneelit ja magneettiset energiankeräysmenetelmät ovat yleisimpiä ratkaisuja, jos olosuhteet antavat siihen mahdollisuuden. Pietsosähköinen energiankeräys on uudempi tekniikka, joka on herättänyt kasvavaa huomiota tutkimusyhteisössä sekä teollisuudessa. Pietsosähköisen materiaalin avulla mekaaninen energia voidaan muuntaa suoraan sähköiseksi energiaksi. Tässä tekniikassa kineettinen energia tulee analysoida tarkasti mekaniikka suunnittelua varten, jotta se saadaan kohdistettua tehokkaasti pietsosähköiseen materiaaliin. Lisäksi mekaniikan tulee suojata materiaalia voimilta, jotka voivat johtaa murtumiin. Näistä vaatimuksista johtuen jokainen ulkoinen energialähde vaatii yleensä yksilöllisen energiankeräysrakenteen. Tämä väitöstyö keskittyy pietsosähköisten keraamien hyödyntämiseen energiankeräyksessä matalataajuisista mekaanisista voimista. Tarkoituksena oli suunnitella, valmistaa, mitata ja asentaa rakenteita, jotka kestävät kantapäähän kohdistuvia voimia kävelyn ja juoksun aikana sekä maksimoida talteen saatava energia ja hyötysuhde. Kaksi erilaista rakennetta suunniteltiin, valmistettiin ja optimoitiin energiankeräystä varten. Kantapäähän kohdistuva kineettinen energia analysoitiin mallinnusohjelmistolla ja mittaamalla sähköinen vaste energiakeräys rakenteesta. Tuloksien avulla suunniteltiin kävelyprofiilia imitoiva mekaaninen männän liike, jonka avulla tutkittiin kohdistettavan voiman nopeuden, vaiheen ja suuruuden vaikutusta energiankeräyksen hyötysuhteeseen ja saatavaan tehoon. Viimeisenä energiankeräysrakenteen toimivuutta testattiin oikeassa ympäristössä asentamalla se juoksukenkään. Kehitetyllä pietsosähköisellä energiakeräimellä saavutettiin korkeimmat raportoidut energiatiheydet käytetyllä taajuusalueella.
3

Novel sensor and switch applications for flexible and stretchable electronic materials

Tolvanen, J. (Jarkko) 23 October 2018 (has links)
Abstract In this thesis flexible electronics composite materials were developed and utilized in pressure sensors. Additionally, stretchable materials based on piezoresistive structures were fabricated and their feasibility for printed electronics switches and stretchable strain sensors was investigated. In the first part of the thesis two types of composite materials were developed based on polyurethane foam with added carbon powder and on liquid crystal polymer with ceramic powder. The first developed composite was utilized in piezoresistive and capacitive hybrid sensors and the latter one for an additive manufactured piezoelectric sensor strip suitable for operation at elevated temperatures. The formable hybrid sensor achieved a maximum pressure sensitivity of 0.338 kPa-1 with response and recovery times less than 200 ms at pressures over 200 kPa and also showed a linear response. The sensor could be utilized, for example, in wearable electronics and robotics. The new type of piezoelectric material showed piezoelectric coefficients of d33 > 14 pC/N and g33 > 108 mVm/N at pressure below 10 kPa with a wide pressure sensing range up to 4.5 MPa. This was higher than that previously achieved for materials fabricated using traditional printing techniques. The piezoelectric sensor would be suitable for industrial process control at elevated temperatures. In the second part of the thesis the stretchable materials were utilized in a new type of piezoresistive structure to fabricate one of the first stretchable switches and a machine washable self-adherable strain sensor. The developed stretchable switch could be actuated with either stretching or vibration with a minimum movement of < 2 μm. The versatile strain sensor with a tunable resistance-strain characteristic achieved the currently highest reported gauge factor (>105) at > 70% stretching. The strain sensor could be utilized for sensing human body movements and physiological signals. / Tiivistelmä Väitöstyössä kehitettiin joustavan elektroniikan komposiittimateriaaleja, joita hyödynnettiin paineantureissa sekä käytettiin venytettäviä materiaaleja painettavan elektroniikan kytkimen ja venymäanturin valmistukseen. Työn ensimmäisessä osassa kehitettiin kahdenlaisia komposiittimateriaaleja, joista ensimmäinen pohjautui polyuretaanivaahtoihin, joihin sisällytettiin hiilijauhetta, sekä toinen nestekidepolymeeriin, johon lisättiin keraamijauhetta. Ensimmäistä kehitettyä komposiittia hyödynnettiin pietsoresistiivisessä ja -kapasitiivisessa hybridianturissa ja jälkimmäistä lisäaine valmistettavassa pietsosähköisessä anturinauhassa, joka soveltui kohotettuihin lämpötiloihin. Muovattavalla hybridianturilla saavutettiin herkkyyden maksimiarvoksi 0.338 kPa-1, alle 200 ms vaste- ja palautumisajat yli 200 kPa paineessa ja lineaarinen vaste. Anturia voitaisiin monipuolisesti hyödyntää mm. puettavassa elektroniikassa ja robotiikassa. Uudenlaisella pietsosähköisellä materiaalilla saavutettiin pietsosähköiset kertoimet (d33 > 14 pC/N ja g33 > 108 mVm/N < 10 kPa paineessa), jotka olivat korkeammat kuin perinteisin tulostusmenetelmin valmistetuilla materiaaleilla. Pietsosähköinen anturi soveltuisi mm. teolliseen prosessivalvontaan kohotetuissa lämpötiloissa. Toisessa osassa hyödynnettiin venytettäviä materiaaleja uudentyyppisissä pietsoresistiivisissä rakenteissa ensimmäisten venytettävän painettavan elektroniikan kytkimen sekä konepestävän itsekiinnityttävän venymäanturin valmistamiseksi. Tulokset on esitetty kahdessa julkaisussa, joista ensimmäinen keskittyi kytkimen valmistamiseen ja toimintaan sekä toinen venymäanturin toimintaan ihmiskehon liikkeen ja signaalien mittaamiseksi. Kehitettyä kytkintä voitiin aktuoida monipuolisesti esim. venytyksen tai värinän avulla alle 2 μm liikkeellä. Monipuolisella venymäanturilla saavutettiin säädettävä resistanssi-venymä suhde korkeimmalla tähän asti ilmoitettu herkkyydellä (>105) yli 70% venytyksellä. Venymäanturia voitiin hyödyntää ihmiskehon liikkeiden ja fysiologisten signaalien mittaamiseen.

Page generated in 0.068 seconds