1 |
Biomechanical sensors from the macro to the nanoscale - the way forwardNicu, Liviu 30 January 2008 (has links) (PDF)
Détecter un ensemble de marqueurs biologiques dans un sérum de patient ou bien des molécules spécifiques d'un herbicide dans un échantillon prélevé dans l'eau d'une rivière ? Etre capable de transformer une interaction biologique en un signal électrique ou encore déposer des volumes infiniment faibles de molécules biologiques sur une surface solide à des fins de diagnostique ? Passer de la fabrication de microcapteurs inertiels pour la navigation à la conception et au développement de biocapteurs micromécaniques ? Nous démontrons que le fil conducteur permettant de faire le lien entre ces domaines en apparence disjoints est matérialisé par des micro- et nanosystèmes électromécaniques développés au sein du LAAS à partir de la feuille blanche jusqu'à l'intégration du système avec son électronique associée. Quel lendemain pour les bio- microsystèmes électromécaniques ? Faut-il encore miniaturiser ? Est-il pertinent d'entreprendre le contraire ? Comment poursuivre l'aventure transdisciplinaire en étant sûr du fait que la réussite est au bout de la route ? Nous tentons de répondre à l'ensemble de ces questions tout au long de ce manuscrit retraçant l'ensemble de nos travaux de recherche effectués au LAAS et ailleurs depuis l'an 2000.
|
2 |
Etude de la biomécanique cellulaire à l'aide de MEMS piézoélectriques organiques / Study of mechanical properties of cells thanks to organic piezoelectric resonatorsDucrot, Pierre-Henri 27 September 2017 (has links)
Ces travaux de thèse sont le fruit d’un constat : le développement des matériaux organiques dans les MEMS ne cesse de croître. Cela est dû à leurs procédés de fabrication à moindre coût et à leurs propriétés qui diffèrent de celles des matériaux inorganiques. D’un point de vue biologique,les propriétés physiques et chimiques des matériaux organiques sont également plus proches des propriétés de l’environnement extra-cellulaire. Les MEMS sont des systèmes très polyvalents permettant de mesurer de nombreuses grandeurs physiques. Leur utilisation dans le domaine biologique n’est donc pas étonnante et il est intéressant de combiner les MEMS avec des matériaux organique pour l’étude de cellules. L’objectif de ces travaux est de fabriquer et d’utiliser des résonateurs MEMS organiques piézoélectriques dans le but d’étudier la biomécanique et l’adhésion de cellules. En effet,la biomécanique des cellules est un domaine d’étude qui renseigne sur de nombreux processus opérés par les cellules, comme l’adhésion cellulaire, ainsi que sur leur bien être. Dans un premier temps, le procédé de fabrication des résonateurs a été établi et optimisé afin d’obtenir une efficacité d’actionnement piézoélectrique maximale. Dans un deuxième temps, un système d’actionnement et de mesure électrique a été réalisé, comportant une carte électronique ainsi qu’une enceinte étanche. L’influence de la température, de la densité et de la viscosité du milieu sur la résonance des MEMS a également été étudiée. Finalement, les résonateurs créés ont été utilisés dans le suivi en temps réel de l’adhésion de cellules souches mésenchymateuses. D’autres applications ont été réalisées avec les résonateurs piézoélectriques comme l’étude de la position d’une masse sur les résonateurs, la détermination de la rigidité d’un matériau ainsi que de la viscosité d’un liquide. / This PhD thesis is the result of an assessment : the use of organic materials in MEMSis in a constant increase. Organic materials are attractive because of their low-cost fabrication processand their properties that are different from the inorganic ones. From a biological point of view, theirphysical and chemical properties are closer to the properties of extracellular environment. MEMS arevery versatile systems that are able to measure a lot of physical quantities. Therefore, it is not surprisingto use them in biology, and combining MEMS with organic materials is really promising tostudy biological cells behavior. The objective of this work is to fabricate and use piezoelectric organicMEMS resonators to study cell biomechanics and adhesion. In fact, the study of cell biomechanicsgives information on a lot of cellular processes, like the cellular adhesion, as well as on their well-being.Firstly, the resonators fabrication process has been developed and optimized in order to maximize thepiezoelectric actuation. Secondly, an electronic actuation and measurement system has been realized,including an electronic card and a watertight enclosure. The influence of the temperature, mass densityand viscosity of the environment on the dynamic response of the resonators has also been evaluated.Finally, real time measurements of the adhesion of mesenchymal stem cells have been carried out usingthe resonators. The resonators have also been used to study the influence of the position of a mass onthe resonators, to determine the rigidity of a deposited material as well as the viscosity of liquid media.
|
3 |
Lead Zirconate Titanate Piezoelectric Cantilevers for Multimode Vibrating Microelectromechanical SystemsXuqian, Zheng 03 June 2015 (has links)
No description available.
|
Page generated in 0.0493 seconds