• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Novel Concepts in Piezohydraulic Pump Design

Keller, Charles Anderson 01 April 2004 (has links)
Over the past several years, there has been significant development in the field of applications for piezoelectric materials. This thesis focuses on using these materials in a piezohydraulic pump system. Piezopump systems typically operate by pushing fluid through check valves to produce positive fluid flow. The accompanying hydraulic system utilizes a control valve, hydraulic accumulator, and hydraulic actuator. The function of the piezopump is to convert the very small displacements of the piezoelectric stack actuators into useful work. This paper details the design, construction, and testing of four such possible pumping systems. The first system was a thin diaphragm piezo pump which utilized conventional check valves to rectify the flow. This pump was the next generation system in a series of piezopumps designed at Georgia Tech. Its peak performance with a driving voltage of 150V was a flowrate of 140 cc/min with a blocked pressure of 1.38 MPa (200 psi.). The key features of this system were its aluminum construction and ease of assembly. A new technology was developed which used a resonant fluid cavity to build usable pressure for a pumping system. Two half wave resonators were build to operate at frequencies of 20 kHz and 1 kHz. These systems produced good pressure during resonance, but attempts to rectify these high frequency pulses were unsuccessful. Rectification methods such as reed valves, vortex fluid diodes, and nozzle/ diffuser arrangements were discussed. A reed valve system was developed and tested. A fourth piezoelectric system was developed which used the driving elements and the reed valves originally designed for the resonant systems. This non resonant reed valve pump produced good results. This pump systems produced 338cc/min at a frequency of 400 Hz. It also produced a blocked pressure of 250 psi. There are many applications for these miniature high flow pumping systems. The technology in the reed valve pump is scalable, and the size of this particular system may be reduced dramatically to offer even more space saving potential.
2

Development and Analysis of the Lumped Parameter Model of a Piezo-Hydraulic Actuator

Nasser, Khalil Maurice 12 December 2000 (has links)
Hybrid actuation is an expanding field in which several systems, such as a mechanical, electrical, hydraulic, pneumatic, and/or thermal, among others, are integrated in order to combine certain aspects of each system, and achieve a better and more efficient performance under certain operating conditions. The concept of piezohydraulic actuation takes advantage of the high force capabilities that piezoceramics have and combines it with the operation at high frequencies, in order to achieve the hydraulic actuation of a system under a specified stroke and force. High frequency rectification translates the low stroke of a piezoelectric stack into a desired amount of stroke per unit time. Thus, the low displacement, oscillatory motion of the piezoelectric device (coupled with a high frequency operation) is translated into a unidirectional motion of a hydraulic cylinder. As part of this research, a benchtop piezohydraulic unit has been developed and the concept of piezohydraulic actuation has been demonstrated. The effective bidirectional displacement of a hydraulic cylinder through the actuation of a piezoelectric stack has been achieved. A lumped parameter model is developed in order to simulate the dynamics of the hydraulic system and of the entire piezohydraulic unit. The model did approximate the response of the piezohydraulic unit under a one-sided operation. Time response analysis is performed through the frequency spectrum comparison of the measured and the simulated data. Then a two-stage cycle simulation is used to model the pumping operation of the unit. Discrepancies were obtained between the model and the actual system for the single-ended piezohydraulic unit, nonetheless, a good approximation has been achieved for the pumping operation of the double-ended unit under certain conditions. Furthermore, several factors have been identified that may limit the operation of the piezohydraulic unit. First, the need of high displacement actuators often comes with the requirement of high voltage operation along with high current consumptions. Thus, the amplifier becomes the first limitation to overcome. Second, is the response of the controlled valves. The highest valve operating frequency and their time response will set the limit on the piezohydraulic unit. And finally, once these limitations are overcome, the unit is eventually limited by the dynamics of the fluid and the hydraulic system itself. Attenuation in the frequency response, or the operation near resonance and the possibility of cavitation, are some of the aspects that eventually will limit the operation of the piezohydraulic unit. A custom made, high displacement stack is used along with a custom made switching amplifier. The current system is being limited by the second factor, the solenoid valves. Nonethelss the analysis performed has addresed the relevant issues required for the design and use of another set of controlled valves. Finally, the eventual limitation from the hydraulic system has been determined through the analysis of the fluid dynamics of the system. The analysis does not account for potential cavitation, and future operations at high frequencies should take it into account. / Master of Science
3

Piezohydraulic Actuator Design and Modeling Using a Lumped-Parameter Approach

Hurst, William Edwin 27 January 2003 (has links)
The concept of piezohydraulic actuation is to transfer the reciprocal small stroke displacement of piezoceramics into unidirectional motion by frequency rectification through a hydraulic fluid. It takes advantage of the high force capabilities that piezoelectric materials have and couples it with very stiff media such as hydraulic fluid to amplify and create this unidirectional motion. Inlet and outlet valves are connected to a pumping chamber where pressure is built by the displacement of the piezoelectric material and released by the opening of the outlet valve, thus achieving a variable flow rate that is used to push a hydraulic cylinder. Loads may be connected to this hydraulic cylinder for measuring/achieving mechanical power. As part of this research, a benchtop piezohydraulic actuator with active piezohydraulic valves has been developed and the concept of piezohydraulic actuation has been demonstrated. Displacement of a hydraulic cylinder by driving a piezoelectric stack has been achieved while the cylinder was loaded or unloaded. Lumped-parameter state-space models have been developed in order to simulate the dynamics of the active valves and entire actuator system. The model simulates the chamber pressure, displacement of the hydraulic cylinder, and power of the piezohydraulic unit. A four-stage cycle simulation was used to model the pumping operation and dynamic response of the system. Experimental results demonstrate the importance of fluid compressibility, valve timing, and fluid circuit components in the optimization of the output power of the actuation system. An array of different timing tests run on the inlet and outlet valves shows that their timing is crucial to the performance of the system. Also shown is that the optimal timing conditions change slightly while under different loads. When operating at higher frequencies (above 140 Hz), it is shown that the hydraulic fluid circuit does not respond quickly enough for the piston to fully extend against the fluid and loaded cylinder. There is not sufficient time when operating at higher frequencies to push all the fluid from the chamber into the hydraulic cylinder, operation is too fast for the dynamics of the fluid circuit. The four stage lumped-parameter model achieves good approximations of the experimental results when the load inertia was neglected while operating at frequencies below 120 Hz and under loads at or below 12.825 kg. Memory limitations caused the number of elements included in the lumped-parameter model to be limited, and are believed to be the source of the errors for the higher operation frequencies and loads. The model never converged due to the lack of elements, and the simulated system did not respond quickly enough to accurately model the fluid exiting the chamber. When operating at frequencies above the 120 Hz value, this error in modeling the fluid exiting the valves becomes very important. The simulation predicts higher values than the experiment and fails to correlate to the actual results at the higher frequencies and while under the higher loads. The errors at higher loads may also be attributed to the neglected inertia. The most recent tests on the benchtop set-up were all run with a pre-pressure value of 190 psi, a piston duty cycle of 50%, valve duty cycles of 40% for each, and a 5% outlet valve offset. Slightly better operation performance might be achieved at frequencies higher than 140 Hz by increasing the piston duty cycle and varying the valve parameters. Also, increaing the pre-pressure of the fluid may help by stiffening the system to create a faster response, however this will have an adverse effect also by creating more force against piston motion. Lastly, the hydraulic cylinder was built for high pressures and had considerable friction associated with it. Obtaining a different cylinder with less friction may also help the response time of the fluid circuit. / Master of Science
4

Μοντελοποίηση και έλεγχος ρευστοδυναμικών συστημάτων με χρήση έξυπνων υλικών

Κωβαίος, Ιωάννης 11 August 2011 (has links)
Η παρούσα διδακτορική διατριβή έχει ως στόχο την ανάλυση και έλεγχο ρευστοδυναμικών συστημάτων χρησιμοποιώντας έξυπνα υλικά όπως πιεζοκρύσταλλοι για τον σχεδιασμό επενεργητών. Στο Μέρος Ι, εκτιμάται η απόδοση μιας πρωτότυπης πιεζο-υδραυλικής αντλίας με χρήση Πεπερασμένων Στοιχείων. Η συγκεκριμένη διάταξη αποτελείται από ένα έμβολο και δύο παθητικές βαλβίδες με συχνότητα λειτουργίας μεγαλύτερη των 100Hz. Το αναπτυχθέν μοντέλο πεπερασμένων στοιχείων λαμβάνει υπόψιν την συμπιεστότητα του ρευστού, την περιορισμένη διάδοση του κύματος πίεσης, τυρβώδη ροή και αμφίδρομη αλληλεπίδραση ρευστού-στερεού των βαλβίδων. Με τα αποτελέσματα των προσομοιώσεων υπολογίστηκε η απόδοση της αντλίας και ακολούθησε παραμετρική βελτιστοποίηση κύριων παραμέτρων της βαλβίδας. Έτσι, έγινε εφικτή η λειτουργία σε υψηλότερες συχνότητες (500Hz) με βελτιωμένη απόδοση. Στην συνέχεια, μελετήθηκε ιδεατό σύστημα με ενεργές βαλβίδες ώστε να αναπτυχθούν τεχνικές ελέγχου του χρονισμού των βαλβίδων. Οι προσομοιώσεις έδειξαν σημαντικά περιθώρια βελτίωσης με ενεργές βαλβίδες, ενώ ανέδειξαν την σημασία της διάδοσης του κύματος, ιδιαίτερα κατά τον συντονισμό. Στο Μέρος ΙΙ, προτάθηκε ένας πρωτότυπος επενεργητής, βασισμένος στην εκμετάλλευση του συντονισμού του ρευστού. Αυτή η προσέγγιση επιτρέπει την μηχανική ολοκλήρωση της αντλίας μέσα στον επενεργητή, ενώ απαιτείται μόνο μια βαλβίδα υψηλής συχνότητας σε αντίθεση με υπάρχοντα συστήματα όπου απαιτούνται δύο (εισαγωγής, εξαγωγής). Ο πρωτότυπος επενεργητής μοντελοποιήθηκε με απευθείας διακριτοποίηση των εξισώσεων Navier Stokes με συμπιεστότητα και εξήχθη ένα μοντέλο χώρου κατάστασης. Παράλληλα με το μοντέλο πιεζοκρυστάλλων και της ροής της βαλβίδας ολοκληρώθηκε το μοντέλο του επενεργητή, ενώ τα βασικά στοιχεία του μοντέλου επιβεβαιώθηκαν με πειραματικά δεδομένα. Επίσης επιβεβαιώθηκε η αρχή λειτουργίας του προτεινόμενου συστήματος του επενεργητή με πειραματικές μετρήσεις. Στην τελευταία ενότητα της διατριβής αναλύονται βασικά στοιχεία με στόχο την βελτίωση της λειτουργίας του επενεργητή. / The present PhD thesis has a key object the analysis and control of fluid dynamics systems taking advantage of the smart material properties like piezocrystals for the design of actuators. In Part I, the performance of a prototype piezohydraulic pump is estimated using the Finite Element Method. The specific setup consists of a piston and two passive valves with an operating frequency greater than 100Hz. The developed Finite Element Model takes into account fluid's compressibility, the limited pressure wave propagation, turbulent flow and Fluid Structure Interaction of the valves with the fluid. Simulation results were used to calculate the pump's performance and a parametric optimization of valve's key parameters is performed. Much higher operating frequencies (500Hz) with improved performance is achieved. In the sequel, studies on a ideal active valve system are undertaken and control techniques of valve timing are developed. Simulations revealed the potential benefit from an active valve system and also revealed the importance of accounting wave propagation phenomena, especially during resonance. In Part II, a novel fluid actuator based on the exploitation of fluid resonance is proposed. This approach allows the integration of the pump within the actuator, whereas only one high frequency valve is needed, in contrast with existing systems where two high frequency valves are needed (inlet, outlet). The novel actuator is modeled using a direct discretization of the compressible Navier Stokes equations and a state space model is derived. Along with the piezoelectric and valve flow model a complete model of the actuator is formulated. The key components of the model are verified with experimental data from a prototype actuator. Also, the concept of the new actuator is proved by experimental measurements. At the last section of the thesis key aspects of the systems for further improvement of the actuator are proposed.

Page generated in 0.0356 seconds