• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 4
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ULTRASTRUCTURE AND CYTOCHEMICAL PROPERTIES OF IRIDOPHORES IN AMPHIBIANS

Taylor, John Dirk, 1939- January 1967 (has links)
No description available.
2

The isolation and characterization of a pigment polymer formed by an adenine-requiring mutant of Saccharomyces cerevisiae

Gottfried, Richard Joseph, 1939- January 1971 (has links)
No description available.
3

Chemical studies of 1,5-benzodioxepanones

Gelebe, Aifheli Carlson January 1991 (has links)
Chromone and flavanone derivatives were prepared by condensation of the corresponding 2-hydroxyacetophenones (with diethyl oxalate or the appropriate aromatic aldehyde respectively) and cyclisation of the condensation products. Saeyer-Villiger rearrangement of these flavanones, with MCPBA, resulted in expansion of the C-ring. Spectroscopic techniques have been used to establish the regioselectivity of the rearrangement and hence, the identity of the rearranged products as 1,5-benzodioxepan-4-ones. The 1,5-benzodioxepan-4-ones were subjected to detailed ¹H and ¹³C n.m.r. analysis and a combination of low and high resolution mass spectrometry has been used to study the mass fragmentation pathways of these ring-expanded products.
4

The effect of the pituitary on xanthophores, iridophores, and pteridines of salamanders

Wadell, Sandra Jean, 1938- January 1967 (has links)
No description available.
5

Diversification of marine picocyanobacteria : the ecology and evolution of spectral phenotype and phycoerythrin /

Everroad, Richard Craig, January 2007 (has links)
Thesis (Ph. D.)--University of Oregon, 2007. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 117-137). Also available for download via the World Wide Web; free to University of Oregon users.
6

The Effect of Medium Constituents upon Pigment Production by Four Species of Bacteria

Goode, Jo Dunn January 1947 (has links)
This investigation had for its aim the determination of the effects of various materials, added to the basic culture medium, upon pigment production of the four chromogens Staphylococcus aureus, Sarcina lutea, Serratia marcescens, and Rhodococcus cinnabaris.
7

Characterization and potential applications of pigment from castanea mollissima shells.

January 2004 (has links)
Yeung Kit Ying. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (leaves 98-106). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstract --- p.ii / List of Abbreviations --- p.iv / List of Tables --- p.v / List of Figures --- p.vi / Chapter 1 --- Introduction / Chapter 1.1 --- Botany --- p.1 / Chapter 1.2 --- Food additives and food preservation --- p.2 / Chapter 1.2.1 --- Lipid peroxidation --- p.2 / Chapter 1.2.2 --- Role of food antioxidant --- p.4 / Chapter 1.2.3 --- Microbial spoilage --- p.5 / Chapter 1.2.4 --- Additives in future --- p.6 / Chapter 1.3 --- Antioxidant and health benefits effects --- p.7 / Chapter 1.4 --- Measurement of antioxidants --- p.7 / Chapter 1.4.1 --- Trolox equivalent antioxidant capacity (TEAC) assay --- p.8 / Chapter 1.4.2 --- DPPH radical scavenging assay --- p.9 / Chapter 1.4.3 --- β-carotene bleaching assay --- p.9 / Chapter 1.4.4 --- Assay for erythrocyte hemolysis mediated by peroxyl free radicals --- p.10 / Chapter 1.4.5 --- Measurement of lipid peroxidation in foods --- p.10 / Chapter 1.5 --- Antiproloiferative studies --- p.12 / Chapter 1.5.1 --- MTT assay --- p.12 / Chapter 1.5.2 --- Cell Proliferation ELISA-BrdU (chemiluminescence) assay --- p.13 / Chapter 1.5.3 --- Cytotoxicity detection assay (LDH) --- p.13 / Chapter 1.6 --- Characterization of phenolic compounds --- p.14 / Chapter 1.6.1 --- Sephadex column chromatography --- p.14 / Chapter 1.6.2 --- Folin and Ciocalteu's assay --- p.15 / Chapter 1.7 --- Research objectives --- p.15 / Chapter 2 --- Materials and Methods / Chapter 2.1 --- Standards and reagents --- p.22 / Chapter 2.2 --- Plant materials --- p.23 / Chapter 2.3 --- Pigment preparation --- p.23 / Chapter 2.4 --- Determination of antioxidant activity --- p.25 / Chapter 2.4.1 --- Trolox equivalent antioxidant capacity (TEAC) assay --- p.25 / Chapter 2.4.2 --- DPPH. radical scavenging assay --- p.26 / Chapter 2.4.3 --- β-carotene bleaching assay --- p.26 / Chapter 2.4.4 --- Assay for erythrocyte hemolysis mediated by peroxyl free radicals --- p.27 / Chapter 2.4.4.1 --- Determination of IC50 --- p.28 / Chapter 2.5 --- Evaluation of CP as antioxidant in various food models --- p.28 / Chapter 2.5.1 --- Preparation of food samples --- p.28 / Chapter 2.5.2 --- Butter cookies --- p.29 / Chapter 2.5.3 --- Salad dressing --- p.29 / Chapter 2.5.4 --- Fried potato chips --- p.29 / Chapter 2.5.5 --- PeroXOquant´ёØ quantitative peroxide assay --- p.29 / Chapter 2.5.6 --- Statistical analysis --- p.30 / Chapter 2.6 --- Determination of antimicrobial activity --- p.31 / Chapter 2.6.1 --- Determination of antimicrobial activity --- p.31 / Chapter 2.6.1.1 --- Bacterial stock --- p.31 / Chapter 2.6.1.2 --- Preparation of nutrient agar plate --- p.31 / Chapter 2.6.1.3 --- Minimal inhibiting concentration (MIC) --- p.31 / Chapter 2.6.2 --- Determination of antifungal activity --- p.32 / Chapter 2.6.2.1 --- Fungi stock --- p.32 / Chapter 2.6.2.2 --- Preparation of potato dextrose agar plates --- p.32 / Chapter 2.6.2.3 --- Growth inhibition effect --- p.32 / Chapter 2.6.3 --- Statistical analysis --- p.33 / Chapter 2.7 --- In vitro effect on human cell lines --- p.34 / Chapter 2.7.1 --- Cell lines --- p.34 / Chapter 2.7.2 --- Maintenance of cell lines --- p.34 / Chapter 2.7.3 --- MTT assay --- p.35 / Chapter 2.7.4 --- Cell Proliferation ELISA-BrdU (chemiluminescence) assay --- p.36 / Chapter 2.7.5 --- Determination of IC50 --- p.37 / Chapter 2.7.6 --- Cytotoxicity detection assay --- p.37 / Chapter 2.7.6.1 --- Optimal cell concentration --- p.37 / Chapter 2.7.6.2 --- LDH detection assay --- p.38 / Chapter 2.7.7 --- Statistical analysis --- p.39 / Chapter 2.8 --- Fractionation and characterization --- p.40 / Chapter 2.8.1 --- Sephadex column chromatography --- p.40 / Chapter 2.8.2 --- Fourier transform infrared (FT-IR) spectra --- p.40 / Chapter 2.8.3 --- Folin and Ciocalteu's assay --- p.40 / Chapter 2.8.4 --- Statistical analysis --- p.41 / Chapter 3 --- Results / Chapter 3.1 --- Determination of antioxidant activity --- p.43 / Chapter 3.1.1 --- Trolox equivalent antioxidant capacity (TEAC) assay --- p.43 / Chapter 3.1.2 --- DPPH.radical scavenging assay --- p.43 / Chapter 3.1.3 --- β-carotene bleaching assay --- p.44 / Chapter 3.1.4 --- Assay for erythrocyte hemolysis mediated by peroxyl free radicals --- p.44 / Chapter 3.2 --- Potential application as food antioxidant --- p.45 / Chapter 3.2.1 --- Peroxide standard curve --- p.45 / Chapter 3.2.2 --- Inhibition of lipid peroxidation in different food items --- p.45 / Chapter 3.3 --- Potential application as food preservative --- p.46 / Chapter 3.3.1 --- Antibacterial activity --- p.46 / Chapter 3.3.2 --- Antifungal activity --- p.46 / Chapter 3.4 --- In vitro effect on human cell lines --- p.47 / Chapter 3.4.1 --- Effect on the growth of human cancer cells --- p.47 / Chapter 3.4.2 --- Antiproliferative effect on selected human cancer cells --- p.48 / Chapter 3.4.3 --- Cytotoxicity effect on selected human cancer cells and normal fibroblast --- p.48 / Chapter 3.4.3.1 --- Optimal cell density for cytotoxicity determined assay --- p.48 / Chapter 3.4.3.2 --- Cytotoxic effect --- p.48 / Chapter 3.5 --- Fractionation and characterization --- p.49 / Chapter 3.5.1 --- Percentage of yield --- p.49 / Chapter 3.5.2 --- Fourier transform infrared (FT-IR) spectra --- p.49 / Chapter 3.5.3 --- Determination of total phenolic content --- p.49 / Chapter 3.5.4 --- Determination of antioxidant activity --- p.50 / Chapter 3.5.5 --- Relationship between total phenolics and antioxidant activity --- p.50 / Chapter 3.5.6 --- Antiproliferative effect on cancer cell --- p.50 / Chapter 3.5.7 --- Cytotoxic effect --- p.51 / Chapter 3.5.7.1 --- HepG2 human cancer cell line --- p.51 / Chapter 3.5.7.2 --- Hs68 human normal fibroblast --- p.51 / Chapter 4 --- Discussion / Chapter 4.1 --- Application of CP as a natural food additive with multi-functions --- p.87 / Chapter 4.1.1 --- CP as a natural food antioxidant --- p.88 / Chapter 4.1.2 --- CP as a natural food preservative --- p.90 / Chapter 4.2 --- Potential health-beneficial --- p.91 / Chapter 4.2.1 --- CP as dietary antioxidant --- p.91 / Chapter 4.2.2 --- Antiproliferative activity of CP --- p.92 / Chapter 4.3 --- Further characterization of CP --- p.94 / Chapter 4.4 --- Future perspectives --- p.96 / Chapter 5 --- Conclusion --- p.97 / References --- p.98
8

Oxylipins from temperate marine algae and a photoprotective sheath pigment from blue-green algae

Proteau, Philip J. 13 August 1993 (has links)
Graduation date: 1994
9

The Antibiotic Effect of Pigmented Actinomycetes

Cichon, Casimir Joseph January 1951 (has links)
This thesis attempts, first, to correlate pigmentation of actinomycetes with the degree of antibiocity; second, to establish the most favorable means of producing a rich luxuriant pigmentation in the individual organism studied by enriching favorable media with specific types of proteins and amino acids.
10

Characterization of the Pigment-Protein and Pigment-ester of Xanthomonas Campestris Pv. Juglandis

Lawani, Leonard Olu 05 1900 (has links)
The objectives of this project were to develop a high performance liquid chromatographic method for separating the pigment esters mixture, to determine the locations of the pigment moiety in the isolated esters using pholosiphases, and to characterize the pigment-protein complex and determine its distribution in other bacteria. Saponification of the two pigment esters 1 and 2 with aqueous KOH yielded two free pigments on TLC plates developed by two solvent systems. The fasters moving of these two free pigments co-chromatographed with the one free pigment produced from each pigment ester by phospholipase A2 treatment. This suggests that the pigment molecule is a methoxy derivative of xanthomonadin and is esterified to the 2-position of the glycerol moiety of each pigment ester. No free pigment was released from phospholipases C and D treatment of the two pigment esters, indicating that pigment is not esterified to the sorbitol or phosphate moiety of pigment esters 1 or 2.

Page generated in 0.08 seconds