• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 87
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 113
  • 110
  • 94
  • 41
  • 31
  • 22
  • 21
  • 20
  • 19
  • 18
  • 12
  • 12
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Mixed-reality for unmanned aerial vehicle operations in near earth environments /

Hing, James T. Oh, Paul Yu. January 2010 (has links)
Thesis (Ph.D.)--Drexel University, 2010. / Includes abstract and vita. Includes bibliographical references (leaves 173-180).
32

Autopilot design for autonomous underwater vehicles based on sliding mode control

Lienard, David E. January 1990 (has links) (PDF)
Thesis (M.S. in Mechanical Engineering and Mechanical Engineer)--Naval Postgraduate School, June 1990. / Thesis Advisor(s): Papoulias, Fotis A. ; Healey, Anthony J. "June 1990." Description based on title screen as viewed on 19 October 2009. DTIC Descriptor(s): Automatic Pilots, Control, Control Theory, Degrees Of Freedom, Depth Control, Guidance, Line Of Sight, Mathematical Models, Nonlinear Systems, Range (Extremes), Self Operation, Sliding, Underwater Vehicles, Velocity. DTIC Indicator(s): Autonomous, Underwater vehicles, Guidance, Control. Author(s) subject terms: Autonomous, Underwater vehicles, AUV, Guidance, Control. Includes bibliographical references (p. 116-117). Also available in print.
33

Integrated assignment and path planning

Murphey, Robert A. January 2005 (has links)
Thesis (Ph. D.)--University of Florida, 2005. / Title from title page of source document. Document formatted into pages; contains 134 pages. Includes vita. Includes bibliographical references.
34

Longitudinal dynamic modeling and control of powered parachute aircraft /

Chambers, John R. January 2007 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 2007. / Typescript. Includes bibliographical references (leaves 106-107).
35

Towards Predicting Completion for United States Air Force (USAF) Remotely Piloted Aircraft (RPA) Training

January 2017 (has links)
abstract: Civilian and military use of remotely piloted aircraft (RPA) has significantly increased in recent years. Specifically, the United States Air Force (USAF) has an insatiable demand for RPA operations, that are responsible for fulfilling critical demands in every theater 24 hours a day, 365 days a year (United States Air Force, 2015). Around the clock operations have led to a manning shortage of RPA pilots in the USAF. The USAF MQ-9 “Reaper” Weapons School trains tactical experts and leaders of Airmen skilled in the art of integrated battle-space dominance (United States Air Force, 2015). Weapons Officers for the MQ-9 platform are also critically under-manned, with only 17% of allocated slots filled (B. Callahan, personal communication, January 28, 2016). Furthermore, the leading cause of training attrition has been attributed to lack of critical thinking and problem solving skills (B. Callahan, personal communication, January 28, 2016); skills not directly screened for prior to entering the RPA pilot career field. The proposed study seeks to discover patterns of student behaviors in the brief and debrief process in Weapons School, with the goal of identifying the competencies that distinguish the top students in Weapons School. / Dissertation/Thesis / Masters Thesis Applied Psychology 2017
36

Parameter estimation techniques for determining safe vehicle speeds in UGVs

Edwards, Dustin L., Bevly, David M. January 2008 (has links) (PDF)
Thesis(M.S.)--Auburn University, 2008. / Abstract. Vita. Includes bibliographic references (p.96-99).
37

Human interfaces for cooperative control of multiple vehicle systems /

Sun, Jisang, January 2006 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Mechanical Engineering, 2006. / Includes bibliographical references (p. 69-74).
38

Agent-based simulation of unmanned surface vehicles : a force in the fleet

Steele, Melissa J. 06 1900 (has links)
Approved for public release; distribution is unlimited. / The Navy is considering the use of unmanned surface vehicles (USVs) to reduce risk to personnel in maritime interdiction operations, and to conduct intelligence, surveillance and reconnaissance (ISR) and force protection (FP) missions. In this thesis, alternative configurations of the prototype and operational uses of the USV are explored using agent-based simulation for three scenarios. An efficient experiment design alters settings of ten factors for the two ISR scenarios and 11 factors for the FP scenario. Some factors varied in the experiment are uncontrollable during operations, such as the total number of contacts, threat density, their maneuvering characteristics, and the sea state. The USV sensor range and endurance are also considered as well as factors set by the decision-maker for a particular mission: namely, USV speed and numbers to deploy. The results provide several operational and tactical insights with implications for patrolling and combat radius, and form the basis for a recommendation to use the USV in an active role in maritime missions. The results also support the guidance on the benefits of improving USV sensing and endurance capabilities, and find that simply increasing USV numbers is not necessary for attaining high mission performance. / Ensign, United States Navy
39

Modelling and control of unmanned ground vehicles.

Tran, Hung Tran January 2007 (has links)
University of Technology, Sydney. Faculty of Engineering. / The thesis focuses on issues of vehicle modelling incorporating wheel-terrain interaction and low-level control design taking into account uncertainties and input time delay. Addressing these issues is of significant importance in achieving persistent autonomy for outdoor UGVs, especially when navigating on unprepared terrains. The test-bed vehicle used for this research is retrofitted from an all-terrain 20-hp, 0.5-tonne vehicle. Its driveline system consists of an internal combustion engine, continuous variable transmission (CVT), gearbox, differential, chains, and eight wheels. The vehicle is driven in the skid-steering mode, which is popular for many off-road land-vehicle platforms. In this thesis, a comprehensive approach is proposed for modelling the driveline. The approach considers the difference in speed between two outputs of the differential and the turning mechanism of the vehicle. It describes dynamics of all components in the vehicle driveline in an integrated manner with the vehicle motion. Given a pattern of the throttle position, left and right braking efforts as the inputs, the dynamic behaviour of the wheels and other components of the UGV can be predicted. For controlling the vehicle at the low level, PID controllers are firstly used for all actuators. As many components of the vehicle exhibit nonlinearities and time delay, the large overshoots encountered in the outputs can lead to undesirable vehicle behaviours. To alleviate the problem, a novel control approach is proposed for suppression of overshoots resulting from PID control. Sliding mode control (SMC) is employed, for this, with time delay compensated by using an output predictor. As a result, the proposed approach can improve significantly system robustness and reduce substantially step response overshoot. Notably, the design is generic in that it can be applied for many dynamic processes. Knowledge of the interaction between the UGV and the terrain plays an important role in increasing its autonomy and securing the safety for off-road locomotion. In this regard, vehicle kinematic equations are combined with the theory of terramechanics for dynamic modelling of the interaction between the vehicle wheels and a variety of terrain types. Also, a fast algorithm is developed to enable online implementation. The novel interaction model takes into account the relationship between normal stresses, shear stresses, and shear displacement of the terrain that is in contact with the wheels in deriving the three-dimensional reaction forces. Finally, all modelling and control algorithms are integrated into a unique simulator for emulating the vehicle mobility characteristics. In particular, the wheel’s slip and rolling resistance can also be derived to provide useful information for closed-loop control when the UGV is navigating in an unknown environment. The simulator, as a tool for analysing the vehicle mobility, is helpful for further research on relevant topics such as traction control, safe and effective locomotion.
40

Modelling and control of unmanned ground vehicles.

Tran, Thanh Hung January 2007 (has links)
University of Technology, Sydney. Faculty of Engineering. / The thesis focuses on issues of vehicle modelling incorporating wheel-terrain interaction and low-level control design taking into account uncertainties and input time delay. Addressing these issues is of significant importance in achieving persistent autonomy for outdoor UGVs, especially when navigating on unprepared terrains. The test-bed vehicle used for this research is retrofitted from an all-terrain 20-hp, 0.5-tonne vehicle. Its driveline system consists of an internal combustion engine, continuous variable transmission (CVT), gearbox, differential, chains, and eight wheels. The vehicle is driven in the skid-steering mode, which is popular for many off-road land-vehicle platforms. In this thesis, a comprehensive approach is proposed for modelling the driveline. The approach considers the difference in speed between two outputs of the differential and the turning mechanism of the vehicle. It describes dynamics of all components in the vehicle driveline in an integrated manner with the vehicle motion. Given a pattern of the throttle position, left and right braking efforts as the inputs, the dynamic behaviour of the wheels and other components of the UGV can be predicted. For controlling the vehicle at the low level, PID controllers are firstly used for all actuators. As many components of the vehicle exhibit nonlinearities and time delay, the large overshoots encountered in the outputs can lead to undesirable vehicle behaviours. To alleviate the problem, a novel control approach is proposed for suppression of overshoots resulting from PID control. Sliding mode control (SMC) is employed, for this, with time delay compensated by using an output predictor. As a result, the proposed approach can improve significantly system robustness and reduce substantially step response overshoot. Notably, the design is generic in that it can be applied for many dynamic processes. Knowledge of the interaction between the UGV and the terrain plays an important role in increasing its autonomy and securing the safety for off-road locomotion. In this regard, vehicle kinematic equations are combined with the theory of terramechanics for dynamic modelling of the interaction between the vehicle wheels and a variety of terrain types. Also, a fast algorithm is developed to enable online implementation. The novel interaction model takes into account the relationship between normal stresses, shear stresses, and shear displacement of the terrain that is in contact with the wheels in deriving the three-dimensional reaction forces. Finally, all modelling and control algorithms are integrated into a unique simulator for emulating the vehicle mobility characteristics. In particular, the wheel’s slip and rolling resistance can also be derived to provide useful information for closed-loop control when the UGV is navigating in an unknown environment. The simulator, as a tool for analysing the vehicle mobility, is helpful for further research on relevant topics such as traction control, safe and effective locomotion.

Page generated in 0.0569 seconds