• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 88
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 114
  • 111
  • 95
  • 41
  • 31
  • 23
  • 21
  • 20
  • 19
  • 18
  • 12
  • 12
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Design and Testing of a Flight Control System for Unstable Subscale Aircraft

Sobron, Alejandro January 2015 (has links)
The primary objective of this thesis was to study, implement, and test low-cost electronic flight control systems (FCS) in remotely piloted subscale research aircraft with relaxed static longitudinal stability. Even though this implementation was carried out in small, simplified test-bed aircraft, it was designed with the aim of being installed later in more complex demonstrator aircraft such as the Generic Future Fighter concept demonstrator project. The recent boom of the unmanned aircraft market has led to the appearance of numerous electronic FCS designed for small-scale vehicles and even hobbyist-type model aircraft. Therefore, the purpose was not to develop a new FCS from scratch, but rather to take advantage of the available technology and to examine the performance of different commercial off-the-shelf (COTS) low-cost systems in statically unstable aircraft models. Two different systems were integrated, calibrated and tested: a simple, gyroscope-based, single-axis controller, and an advanced flight controller with a complete suite of sensors, including a specifically manufactured angle-of-attack transducer. A flight testing methodology and appropriate flight-test data analysis tools were also developed. The satisfactory results are discussed for different flight control laws, and the controller tuning procedure is described. On the other hand, the different test-bed aircraft were analysed from a theoretical point of view by using common aircraft-design methods and conventional preliminary-design tools. The theoretical models were integrated into a flight dynamics simulator, which was compared with flight-test data obtaining a reasonable qualitative correlation. Possible FCS modifications are discussed and some future implementations are proposed, such as the integration of the angle-of-attack in the control laws.
72

An Evaluation of a UAV Guidance System with Consumer Grade GPS Receivers

Rosenberg, Abigail Stella January 2009 (has links)
Remote sensing has been demonstrated an important tool in agricultural and natural resource management and research applications, however there are limitations that exist with traditional platforms (i.e., hand held sensors, linear moves, vehicle mounted, airplanes, remotely piloted vehicles (RPVs), unmanned aerial vehicles (UAVs) and satellites). Rapid technological advances in electronics, computers, software applications, and the aerospace industry have dramatically reduced the cost and increased the availability of remote sensing technologies.Remote sensing imagery vary in spectral, spatial, and temporal resolutions and are available from numerous providers. Appendix A presented results of a test project that acquired high-resolution aerial photography with a RPV to map the boundary of a 0.42 km2 fire area. The project mapped the boundaries of the fire area from a mosaic of the aerial images collected and compared this with ground-based measurements. The project achieved a 92.4% correlation between the aerial assessment and the ground truth data.Appendix B used multi-objective analysis to quantitatively assess the tradeoffs between different sensor platform attributes to identify the best overall technology. Experts were surveyed to identify the best overall technology at three different pixel sizes.Appendix C evaluated the positional accuracy of a relatively low cost UAV designed for high resolution remote sensing of small areas in order to determine the positional accuracy of sensor readings. The study evaluated the accuracy and uncertainty of a UAV flight route with respect to the programmed waypoints and of the UAV's GPS position, respectively. In addition, the potential displacement of sensor data was evaluated based on (1) GPS measurements on board the aircraft and (2) the autopilot's circuit board with 3-axis gyros and accelerometers (i.e., roll, pitch, and yaw). The accuracies were estimated based on a 95% confidence interval or similar methods. The accuracy achieved in the second and third manuscripts demonstrates that reasonably priced, high resolution remote sensing via RPVs and UAVs is practical for agriculture and natural resource professionals.
73

A neuro-adaptive autopilot design for guided munitions

Sharma, Manu 05 1900 (has links)
No description available.
74

Investigation of lateral performance of an ATV tire on natural, deformable surfaces

Krueger, Darrell R. Johnes, Peter D. January 2007 (has links)
Thesis--Auburn University, 2007. / Abstract. Vita. Includes bibliographic references (p.148-150).
75

Covering the homeland: National Guard unmanned aircraft systems support for wildland firefighting and natural disaster events

Moose, Robert G. January 2008 (has links) (PDF)
Thesis (M.A. in Security Studies (Homeland Security and Defense))--Naval Postgraduate School, December 2008. / Thesis Advisor(s): Wirtz, James J. "December 2008." Description based on title screen as viewed on January 30, 2009. Includes bibliographical references (p. 99-108). Also available in print.
76

Dynamic clustering protocol based on relative speed in mobile ad hoc networks for intelligent vehicles

Gopalaswamy, Sundeep, Lim, Alvin S. January 2007 (has links) (PDF)
Thesis(M.S.)--Auburn University, 2007. / Abstract. Vita. Includes bibliographic references (p.72-74).
77

Obstacle detection using a monocular camera

Goroshin, Rostislav January 2008 (has links)
Thesis (M. S.)--Electrical and Computer Engineering, Georgia Institute of Technology, 2008. / Committee Chair: Vela, Patricio; Committee Member: Collins, Thomas; Committee Member: Howard, Ayanna
78

Special Operations Forces and Unmanned Aerial Vehicles Sooner or Later? /

Howard, Stephen P. 23 March 1998 (has links)
Thesis (M.M.A.S.)--School of Advanced Airpower Studies, 1995. / Subject: An analysis of whether Special Operations Forces should use Unmanned Aerial Vehicles to support intelligence, surveillance, reconnaissance, communications and re-supply capability deficiencies. Cover page date: June 1995. Vita. Includes bibliographical references.
79

Semi autonomous vehicle intelligence : real time target tracking for vision guided autonomous vehicles /

Anderson, Jonathan D., January 2007 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Electrical and Computer Engineering, 2007. / Includes bibliographical references (p. 81-84).
80

3D wind vectors measurement with remotely piloted aircraft system for aerosol-cloud interaction study

Calmer, Radiance 20 March 2018 (has links) (PDF)
The European project BACCHUS (impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) focuses on aerosol-cloud interactions. Vertical wind velocities near cloud base, and cloud condensation nuclei (CCN) spectra, are the two most important input parameters for aerosol-cloud parcel models in determining cloud microphysical and optical properties. Therefore, the present study focuses on the instrumental development for vertical wind measurements to improve aerosol-cloud closure studies. Enhancements in Remotely Piloted Aircraft Systems (RPAS) have demonstrated their potential as tools in atmospheric research to study the boundary layer dynamics, aerosols and clouds. However, as a relatively new tool for atmospheric research, RPA require instrumental development and validation to address current observational needs. A 5-hole probe is implemented on a remotely piloted aircraft (RPA) platform, with an inertial navigation system (INS) to obtain atmospheric wind vectors. The 5- hole probe is first calibrated in a wind tunnel (at Météo-France, Toulouse, France), and an error analysis is conducted on the vertical wind measurement. Atmospheric wind vectors obtained from RPA flights are compared with wind vectors determined from sonic anemometers located at different levels on a 60 m meteorological mast (Centre de Recherches Atmosphériques, Lannemezan, France). Good agreements between vertical wind velocity probability density functions are obtained. The power spectral density of the three wind components follow the -5/3 line for the established regime of turbulence (Kolmogorov law). Turbulent kinetic energy (TKE) values calculated from the RPA are somewhat higher than TKE compared to the sonic anemometer; however, the results agree with those reported in other experiments that compare RPA platforms and sonic anemometers (Lampert et al. (2016), Båserud et al. (2016)). As the RPA equipped with a 5-hole probe (defined as the ``wind-RPA'') is developed for aerosol-cloud observations, updraft velocities near cloud base are compared with cloud radar data during a BACCHUS field campaign (Mace Head Research Station, Ireland). Three case studies illustrate the similarity of in-cloud updrafts measured between the wind-RPA and the cloud radar. A good agreement between vertical velocities of both instruments over a range of different meteorological conditions is found. Updraft velocity measurements from the wind-RPA are implemented in the aerosol-cloud parcel model to conduct a closure study for stratocumulus case with convection sampled during a BACCHUS field campaign in Cyprus. Aerosol size distributions and CCN were measured at a ground-site, which served as input to the aerosol-cloud parcel model along with the updraft velocities at cloud base measured by the RPA. In addition, the RPA conducted a vertical profile through the cloud layer and measured the shortwave transmission of solar irradiance during the ascent. The aerosol-cloud parcel model also shows that entrainment has a greater impact on cloud optical properties than variability in updraft velocity and aerosol particle concentration. Results of the case study for the Cyprus field experiment are consistent with results for similar closure studies conducted during the Mace Head field campaign (Sanchez et al., 2017), and reinforce the significance of including entrainment processes in cloud models to reduce uncertainties in aerosol-cloud interactions.

Page generated in 0.0447 seconds