• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Snedskarvning som industriell tillverkningsmetod för trälister / Scarf jointing as an industrial manufacturing method of wood laths

Gunnarsson, Johan, Gustafsson, André January 2016 (has links)
Kan snedskarvning vara ett ekonomiskt lämpligt komplement till fingerskarvning? Kvistfritt listmaterial av furu är mycket eftertraktat inom träindustrin där fingerskarvning numera är den mest förekommande metoden. Det är viktigt att listmaterial har en hanteringsstyrka god nog för att hålla ihop vid montering eftersom konstruktionsstyrkan inte är den begränsande faktorn. Denna studie innehåller en jämförelse i draghållfasthet för lister gjorda med fingerskarv, MDF och snedskarv där det lägsta vinkelförhållandet som uppfyller kraven på skarven är sökt från 1:1 till 1:5. Tidigare tester framhåller förhållandet 1:8 när det är till för konstruktionsändamål, denna studie hävdar att 1:3 är tillräckligt för lister. / Could scarf jointing be an economical suitable complement to finger jointing? Knot-free lath material of pine wood is highly requested in the timber industry where finger jointing nowadays is a commonly used method. It is important that the lath material has a handling strength good enough to hold the assembly since structural strength is not the limited factor. This study contains a comparison of tensile strength in laths made of finger joints, MDF (Medium Density Fibreboard) and scarf joints where the lowest ratio of angular relationship that meets the demands of the scarf is searched from 1:1 to 1:5. Previous testing only holds a ratio of 1:8 for construction purposes whereas this study claims a result of 1:3 for laths.
12

Advanced liquid and gas NMR methods for probing topical materials

Javed, M. A. (Muhammad Asadullah) 20 May 2019 (has links)
Abstract The present thesis exploits advanced liquid and gas NMR methods for the characterization of various interesting materials. The methods used to study the structural properties of thermally modified wood, ionic liquids, cements, shales, and porous organic cages include MRI, NMR cryoporometry, Laplace NMR, multidimensional Laplace NMR, as well as ¹²⁹Xe and ¹⁹F NMR. The commonality factor in all the studies is the usage of either inherent or introduced liquid or gas molecules to probe the topical materials. The MRI method was utilized to visualize the water absorption phenomena in the thermally modified pine wood. High-resolution images made it possible to observe the spatial distribution of free water and the changes in the rate of absorption of water in wood samples modified at different temperatures. The images also helped to resolve the individual resin channels. T₂ maps enabled us to observe the changes in the relaxation values of free water in thermally modified wood as compared to their unmodified reference wood samples. The multidimensional Laplace NMR methods were exploited to study the structural and dynamical properties of a novel halogen-free, boron-based ionic liquid (hf-BIL). NMR self-diffusion (D) experiments showed the presence of two coexisting dynamic phases in hf-BIL. Multidimensional D − T₂ correlation experiments made it possible to determine the T₂ relaxation times of the slow and fast diffusing phases. T₂ − T₂ relaxation exchange measurements allowed quantifying the exchange rates of anions and cations between the phases. Moreover, the theoretical modeling of the experimental data revealed that the slow diffusing phase was composed of anion-cation aggregates, while the fast diffusing phase was comprised of free anions and cations. ¹²⁹Xe NMR analysis of the xenon adsorbed in the cements and shales helped us to determine their porous structures. The method exploits the high sensitivity of the chemical shift of ¹²⁹Xe to its local environment. The chemical shift value of ¹²⁹Xe enabled us to estimate the size of the mesopores in the cement samples. The exchange spectroscopy (EXSY) measurements were used to determine the exchange rates between the free gas and mesopores of the cement samples. ¹²⁹Xe NMR spectra of the shale samples provided information about pore sizes and paramagnetic compounds. ¹H NMR cryoporometry measurements of the shale samples immersed in acetonitrile made it possible to analyze the pore size distribution ranging from 10 to over 100 nm. Moreover, T₂ − T₂ exchange measurements helped us to quantify the exchange rates of acetonitrile in the shale samples. Xenon and SF₆ were used as internal reporters to gain versatile information on adsorption phenomena in the cage and window cavities of the crystalline porous organic cages. ¹²⁹Xe NMR analysis of the adsorbed xenon helped us to determine the diffusion coefficients and activation energy of diffusion as well as thermodynamic parameters. With the help of T₂ relaxation time values, it was possible to estimate the exchange rates between cage and window cavities. Chemical exchange saturation transfer (CEST) experiments resolved a window cavity site, which arises from crystal defects in porous organic cages. In addition, ¹⁹F NMR analysis made it possible to estimate the relaxation rates and diffusion coefficients of SF₆ gas in porous organic cages. Modelling of the T₁, T₂ and diffusion data confirmed that the cage to window exchange is the completely dominating mechanism for ¹²⁹Xe T₂ relaxation. T₁ relaxation is dominated by diffusion modulated dipole-dipole relaxation (DDinter) and chemical shift anisotropy (CSA) relaxation due to local cavity mobility. Whereas, in case of SF₆ T₂ data, the dominating mechanism is diffusion modulated dipole-dipole relaxation and for T₁ the local tumbling of SF₆ in cage cavity is the key dynamics behind the dipole-dipole and CSA mechanisms. / Original papers The original publications are not included in the electronic version of the dissertation. Javed, M. A., Kekkonen, P. M., Ahola, S., & Telkki, V.-V. (2015). Magnetic resonance imaging study of water absorption in thermally modified pine wood. Holzforschung, 69(7), 899–907. https://doi.org/10.1515/hf-2014-0183 Javed, M. A., Ahola, S., Håkansson, P., Mankinen, O., Aslam, M. K., Filippov, A., … Telkki, V.-V. (2017). Structure and dynamics elucidation of ionic liquids using multidimensional Laplace NMR. Chem. Commun., 53(80), 11056–11059. https://doi.org/10.1039/c7cc05493a http://jultika.oulu.fi/Record/nbnfi-fe2017102750335 Javed, M. A., Komulainen, S., Daigle, H., Zhang, B., Vaara, J., Zhou, B., & Telkki, V.-V. (2019). Determination of pore structures and dynamics of fluids in hydrated cements and natural shales by various ¹H and ¹²⁹Xe NMR methods. Microporous and Mesoporous Materials, 281, 66–74. https://doi.org/10.1016/j.micromeso.2019.02.034 http://jultika.oulu.fi/Record/nbnfi-fe2019041712678 Komulainen, S., Roukala, J., Zhivonitko, V. V., Javed, M. A., Chen, L., Holden, D., … Telkki, V.-V. (2017). Inside information on xenon adsorption in porous organic cages by NMR. Chemical Science, 8(8), 5721–5727. https://doi.org/10.1039/C7SC01990D http://jultika.oulu.fi/Record/nbnfi-fe201709288804 Håkansson, P., Javed, M. A., Komulainen, S., Chen, L., Holden, D., Hasell, T., … Telkki, V.-V. (2019). NMR relaxation and modelling study of the dynamics of SF₆ and Xe in porous organic cages. Manuscript.
13

Synthesis, Characterization and Catalytic Studies of Carbon-Based Nano Materials

Yan, Qiangu 30 April 2011 (has links)
Nano-scaled carbons were produced by thermal treatment of pine wood chips and bio-char. The influence of temperature, heating rate, pyrolysis time, and type and flow rate of purge gas on the production of nano-carbons was investigated. Using TEM and SEM, different carbon-based nanomaterials were observed in the prepared samples. The effect of metal ion doping on the bio-char was also investigated. Highly functionalized nano carbonaceous materials were synthesized by low temperature hydrothermal carbonization (HTC) using glucose, sucrose, xylose, and cellulose. Carbon-encapsulated iron (Fe@C) core-shell particles were also synthesized by the HTC method and used as catalyst for Fischer-Tropsch synthesis to produce liquid hydrocarbons from syngas; it showed excellent activity. Nano-structured Co-Mo carbides over several nano-sized carbon materials were prepared using the carbothermal reduction and carbothermal hydrogen reduction methods. Nano-structured Co-Mo carbides derived from Vulcan® XC-72 were used as the catalyst to produce higher alcohols.

Page generated in 0.0522 seconds