• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 99
  • 43
  • 15
  • 13
  • 12
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 239
  • 48
  • 48
  • 39
  • 37
  • 33
  • 31
  • 31
  • 30
  • 28
  • 28
  • 28
  • 23
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Condition monitoring of axial piston pump

Li, Zeliang Eric 30 November 2005
<p>Condition Monitoring is an area that has seen substantial growth in the last few decades. The purpose for implementing condition monitoring in industry is to increase productivity, decrease maintenance costs and increase safety. Therefore, condition monitoring can be used not only for planning maintenance but also for allowing the selection of the most efficient equipment to minimize operating costs. </p><p>Hydraulic systems are widely used in industry, aerospace and agriculture and are becoming more complex in construction and in function. Reliability of the systems must be supported by an efficient maintenance scheme. Due to component wear or failure, some system parameters may change causing abnormal behaviour in each component or in the overall circuit. Research in this area has been substantial, and includes specialized studies on artificial fault simulation at the University of Saskatchewan. In this research, an axial pump was the focus of the study. In an axial piston pump, wear between the various faces of components can occur in many parts of the unit. As a consequence, leakage can occur in locations such as between the valve plate and barrel, the drive shaft and oil wiper, the control piston and piston guide, and the swash plate and slippers. In this study, wear (and hence leakage) between the pistons and cylinder bores in the barrel was of interest. Researchers at the University of Saskatchewan, as well as at other research institutions, have been involved in studies to detect wear in pumps using a variety of condition monitoring algorithms. However, to verify the reliability and indeed, limitations of some of the approaches, it is necessary to test the algorithms on systems with real leakage. To introduce actual wear in the piston of pumps can be very difficult and very expensive. Hence, introducing piston wear in an artificial manner would be of great benefit in the evaluation of various condition monitoring techniques.</p><p>Since leakage is a direct consequence of piston wear, it is logical to conclude that varying the leakage in some prescribed manner can be used to artificially simulate wear. A prime concern, therefore, is to be able to precisely understand the dynamic relationships between the wear and leakage and the effect it has on the output flow or pressure waveform from the pump.</p><p>Introducing an artificial leakage to simulate the wear of pistons is a complex task. The creation of an artificial leakage path was not simply a process of providing a resistive short to the tank at the outlet of the pump port as was done in other studies. The objective was to create a leakage environment that would simulate leakage from a single piston (or combination of several pistons thereof). The complexity of the flow and pressure ripple waveforms (which various condition monitoring algorithms did require) was such that a more comprehensive leakage behaviour had to be modeled and experimentally created. A pressure control servo valve with a very high frequency response was employed to divert the flow from the pump outlet with a prescribed waveform directly to the tank to simulate the piston leakage from the high pressure discharge chamber to the pump case drain chamber as the simulated worn piston made contact with the high pressure chamber. The control algorithm could mimic the action of a single worn piston at various degrees of wear. The experimental results indicated that the experimental system could successfully introduce artificial leakage into the pump which was quite consistent with a unit with a real worn piston. Comparisons of the pressure ripples from an actual faulty pump (worn piston) and the artificial faulty pump (artificial leakage) are presented.</p>
32

Condition monitoring of axial piston pump

Li, Zeliang Eric 30 November 2005 (has links)
<p>Condition Monitoring is an area that has seen substantial growth in the last few decades. The purpose for implementing condition monitoring in industry is to increase productivity, decrease maintenance costs and increase safety. Therefore, condition monitoring can be used not only for planning maintenance but also for allowing the selection of the most efficient equipment to minimize operating costs. </p><p>Hydraulic systems are widely used in industry, aerospace and agriculture and are becoming more complex in construction and in function. Reliability of the systems must be supported by an efficient maintenance scheme. Due to component wear or failure, some system parameters may change causing abnormal behaviour in each component or in the overall circuit. Research in this area has been substantial, and includes specialized studies on artificial fault simulation at the University of Saskatchewan. In this research, an axial pump was the focus of the study. In an axial piston pump, wear between the various faces of components can occur in many parts of the unit. As a consequence, leakage can occur in locations such as between the valve plate and barrel, the drive shaft and oil wiper, the control piston and piston guide, and the swash plate and slippers. In this study, wear (and hence leakage) between the pistons and cylinder bores in the barrel was of interest. Researchers at the University of Saskatchewan, as well as at other research institutions, have been involved in studies to detect wear in pumps using a variety of condition monitoring algorithms. However, to verify the reliability and indeed, limitations of some of the approaches, it is necessary to test the algorithms on systems with real leakage. To introduce actual wear in the piston of pumps can be very difficult and very expensive. Hence, introducing piston wear in an artificial manner would be of great benefit in the evaluation of various condition monitoring techniques.</p><p>Since leakage is a direct consequence of piston wear, it is logical to conclude that varying the leakage in some prescribed manner can be used to artificially simulate wear. A prime concern, therefore, is to be able to precisely understand the dynamic relationships between the wear and leakage and the effect it has on the output flow or pressure waveform from the pump.</p><p>Introducing an artificial leakage to simulate the wear of pistons is a complex task. The creation of an artificial leakage path was not simply a process of providing a resistive short to the tank at the outlet of the pump port as was done in other studies. The objective was to create a leakage environment that would simulate leakage from a single piston (or combination of several pistons thereof). The complexity of the flow and pressure ripple waveforms (which various condition monitoring algorithms did require) was such that a more comprehensive leakage behaviour had to be modeled and experimentally created. A pressure control servo valve with a very high frequency response was employed to divert the flow from the pump outlet with a prescribed waveform directly to the tank to simulate the piston leakage from the high pressure discharge chamber to the pump case drain chamber as the simulated worn piston made contact with the high pressure chamber. The control algorithm could mimic the action of a single worn piston at various degrees of wear. The experimental results indicated that the experimental system could successfully introduce artificial leakage into the pump which was quite consistent with a unit with a real worn piston. Comparisons of the pressure ripples from an actual faulty pump (worn piston) and the artificial faulty pump (artificial leakage) are presented.</p>
33

Improvement Of Piston Ring Quality : A Case Study

Nataraja, H S 11 1900 (has links)
Automobiles have become an integral part of our daily life as more and more mopeds, motor cycles, cars, trucks, busses and trains are being used for transport. The main parts of an automotive engine are cylinder, piston assembly, connecting rod and crank shaft. The piston assembly consists of Piston, Piston rings and Piston Pin. Piston rings are important parts of a piston assembly. Any non-conformance in any quality characteristic of the piston ring leads to deterioration of engine performance. M/S Goetze (India) Limited a medium scale industry and a sister concern of engineering giant M/S Escorts Limited is manufacturing "GOETZE PISTON RINGS" and is producing about 800 varieties of piston rings ranging from 35.00 mm to 228.5 mm nominal diameter. The management was facing serious problem due to high scrap rate in certain types of their manufactured piston rings. Hence instead of trying to handle all of them at the same time, it seemed reasonable to tackle and find a suitable approach to solve the quality problem by taking the most notorious ring first, so that once the methodology is understood, documented and applied to the quality problem of this ring, the same can also be invoked for other rings to improve upon their quality, and thus reducing the scrap rate. One particular ring of 83.0 mm diameter which is delicate and costly, having an average scrap rate of 36.2% in past three years is selected for the study. No systematic effort was made in the past to identify the quality characteristics and the processes which were responsible for this high scrap rate and thus no immediate measure could be recommended. As a matter of fact at the beginning of the study it was not even clear which quality characteristics were mainly responsible for such high rejection. So in July' 1999 a pareto analysis was done for the first time to identify the culpability of each quality characteristic for the rejection of the ring. From the Pareto analysis it was observed that maximum proportion of rejection was due to nonconformity in axial thickness. The scrap rate due to nonconformity in axial thickness were collected for each month from Jul’ 999 to Jan'2000 which averaged at 8.7%. Since in every month the major malefactor for rejection was the nonconformity of axial thickness it was decided to first try to improve the quality of axial thickness, before trying to tackle other quality issues associated with this particular piston ring under study. Once the most problematic quality characteristic namely the axial thickness was identified, as a first step towards the goal of improving the quality of axial thickness, it was necessary to pay attention and isolate the manufacturing processes or operations affecting the axial thickness and study them in detail. So first, the entire manufacturing process flow diagram of the piston ring was studied. From the process flow diagram it appeared that there are 4 operations affecting axial thickness viz. Rough Grinding ,Medium Grinding, First Lapping and Finish Lapping. So each of these processes was critically observed to assess whether they were under statistical control or not. Studies were conducted at each of these 4 operations by collecting samples using the rational subgroup method and control charts were plotted. From the control charts, it was observed that the Rough Grinding and Medium Grinding operations were in statistical control with acceptable Cp, Cpk values. But First Lapping and Finish Lapping operations were not in statistical control. Thus we finally identified the two critical processes namely the First Lapping and Finish Lapping operations which were not in statistical control but were crucially affecting the quality of axial thickness. Since the First and Finish Lapping operations were identified as the major source of the quality problem, an in-depth study was undertaken to analyze these two processes. A brain storming session was conducted with all concerned personnel from production, maintenance, design, quality assurance and tool room to get all possible causes which might be affecting the axial thickness variation at these two processes. During the brain storming session the team suggested that the First Lapping process can be processed in medium grinding machine (DFS machine) instead of Lapping machine. The reasons behind this were two fold. First since the aim of the First Lapping is just to remove excess material which was deposited during chrome plating, the same operation can be performed in DFS machine. Since the required surface finish on axial surface was any way being aimed at the Finish Lapping operation, a similar precursory First Lapping'operation in a Lapping machine was really felt not necessary. Secondly since the performance of the DFS machine was found to be under control, albeit for the grinding operation, it was hoped that the Lapping operation in the same machine would also exhibit a similar performance. For this purpose a study was conducted on the First Lapping operation with the DFS machine. It was found that the process was well within the control limit with decent Cp and Cpk values. Thus this procedure of performing the First Lapping operation in a DFS machine took care of the first one of the two problematic processes affecting the quality of axial thickness. Next for tackling the problem with the other critical process, viz. the Finish Lapping operation, various causes were suggested by the team for axial thickness variation in the Finish Lapping operation. Based on these causes, an Ishikawa diagram (cause and effect diagram) was prepared. This Ishikawa diagram had thrown light into number of possible deficiencies in Man, Machine, Method and Material which were responsible for axial thickness variation at finish Lapping. The Ishikawa diagram was carefully analyzed. The causes were narrowed down to 6 factors. These are Grinding wheel rotating speed, Grinding Time, Grinding pressure, Holding plate, Holes (fixtures) within the holding plate and Positions within a ring. The 3 factors namely grinding wheel speed, time and pressure were identified as the control factors. Holding plate, Hole position within a plate and Checking position within a ring on the other hand were the noise factors whose different levels might exhibit a variability of axial thickness. Since there were only 3 control factors, it was decided to conduct a full factorial experiment with each control factor at 3 levels. Hence altogether there were 27 experiments at a fixed given combination of speed, time and pressure. There were 4 holding plates with each plate having 6 slotted holes leading to machining 24 rings at a time during the finish lapping operation. Next 3 measurements were taken for each one of these 24 rings. Thus altogether there were 72 observations for one of these experiments. Each experiment was replicated twice by taking measurements for 2 consecutive batches of rings. From the analysis of variance of the results of these experiments for both S/N ratio and mean it was observed that all the three main factors and their interactions were significant. The Normality assumption of standardized residuals for the S/N ratio and mean was validated by normal probability plot and Kolmonogorov-Smirnoff test. The homoscedasticity assumption was validated through Bartlett’s test and residual plots. It was found that the experiment no. 23 (Speed 84 RPM, Time 10 sees and Pressure 300 daN) yielded highest S/N ratio (η) with mean within the specification limit. That the mean and S/N ratio for the experiment no.23 were significantly different from others was established by means of Tukey's multiple comparison test. Next control charts for experiment no. 23 were plotted and was found to be well within control with acceptable Cp and Cpk values. Hence we concluded that the non-conformance in axial thickness can be substantially reduced by using the following optimal setting of factors i.e. grinding speed with 84 RPM, grinding pressure with 300 daN and grinding time with 10 seconds. Using this optimal setting the earlier average rejection rate of 8.7% due to non-conformance in axial thickness was reduced to 0.05%. Under this optimal setting, the process capability index (Cpk) of finish Lapping operation was estimated to be 2.5, which is well above acceptable standard. Due to this reduction in rejection rate in one quality characteristics of one particular ring out of 800 types, the net savings to the organization is approximately Rs. 10,44,000 per year.
34

MANIFOLD AND PORT DESIGN FOR BALANCED FLOW AND INCREASED TURBULENCE IN A TWO-STROKE, OPPOSED PISTON ENGINE

James C Rieser (11818853) 18 December 2021 (has links)
<p>Two-stroke, opposed piston engines have gained recent attention for their improved thermal efficiency relative to the conventional inline or V-configuration. One advantage of two-stroke, opposed piston engines is a reduction in heat losses since there is no cylinder head. Another advantage is improved gas exchange via uniflow scavenging since the exhaust and intake ports may be located near bottom dead center of the exhaust and intake pistons, respectively. One challenge with the design of two-stroke engines is promoting turbulence within the cylinder. Turbulence is important for mixing air and fuel in the cylinder and for increasing flame speed during combustion. </p> <p>This work investigates the flow and turbulence through two-stroke, opposed piston engines using computational fluid dynamics (CFD). Specifically, the role of intake manifold and intake port geometry on turbulence within the cylinder was investigated by systematically modifying the engine geometry. Turbulence was then quantified using three metrics: circulation around the cylinder axis (swirl), circulation normal to the cylinder axis (tumble), and volume average turbulent kinetic energy (TKE) within the cylinder.</p> Increasing the swirl angle from 0 degrees to 10 degrees increased the in-cylinder swirl by a factor of 3. Increasing the swirl angle also increased the volume average TKE by a range of 7.6% to 36.5% across the three cylinders of the engine. A reverse tilt angle of 15 degrees increased tumble circulation near the piston face but decreased tumble circulation by a factor of 3 near the center of the cylinder. The next step for research on this would be to apply more geometric manipulations to the manifold of the swirl engine design to balance the mass flow rate for each port. Following the redesign of the manifold the next step is to perform a dynamic CFD test to verify the mass flow has been balanced under a dynamic scenario.
35

Letecký motor / Aircraft engine

Kalugin, Ivan January 2011 (has links)
This thesis is focused to design piston rods for aircraft petrol six-cylinder engine with 102 kW output power and project their form. Other part deals with analysis of balancing of arranging and fort control one of piston rod.
36

The Impact of Micro-Surface Shaping of the Piston on the Piston/Cylinder Interface of an Axial Piston Machine

Wondergem, Ashley, Ivantysynova, Monika January 2016 (has links)
Axial piston machines of the swashplate type are commonly used in various hydraulic systems and with recent developments in displacement control, it is essential to maximize their efficiency further reducing operation costs as well as improving performance and reliability. This paper reports findings of a research study conducted for the piston-cylinder interface utilizing a novel fluid structure thermal interaction model considering solid body deformation due to thermal and pressure effects in order to accurately predict the transient fluid film within the gap. A large reduction in energy dissipation is possible due to reduced clearances allowable due to the surface shaping of the piston resulting in a reduction in leakage. From this study, it is shown that surface shaping of the piston in combination with a reduced clearance is not only beneficial by improving the efficiency of a machine, but also increases the reliability and the performance of the machine as the load support is enhanced.
37

Enabling High-Pressure Operation with Water for the Piston-Cylinder Interface In Axial Piston Machines

Meike H Ernst (10135868) 01 March 2021 (has links)
<div><p>Water is inflammable, non-toxic, environmentally friendly--- desirable traits, for a hydraulic fluid. However, its extremely low viscosity diminishes the load-bearing and sealing capacity of lubricating interfaces. Case in point: axial piston machines of swash plate design are compact, highly efficient positive displacement machines at the heart of hydraulic systems in forestry, construction, aerospace, and agricultural equipment, as well as industrial applications (presses, etc.); however, the three main lubricating interfaces decisive to the performance of such units in terms of both component life and efficiency are challenged by the use of water as working fluid. Especially during high-pressure operation, this low-viscosity lubricant can cause the these interfaces to fail in carrying the imposed load, resulting in severe wear, or even pump failure. The piston-cylinder interface is particularly challenging to design for water because it stands under obligation to carry the heavy side load that acts on the pistons of these machines, which increases with operating pressure. Furthermore, the architecture of axial piston machines of swash plate design does not allow this interface to be hydrostatically balanced.</p> <p> </p> <p>Through the development of a methodology that separates the fluid pressure fields of the three main lubricating interfaces of axial piston machines into their hydrostatic and hydrodynamic components, the present work enables a direct comparison of these interfaces in terms of how they support load. A case study of a 75 cc unit running on hydraulic oil conducted via this methodology at three different operating conditions (low pressure/low speed, low pressure/high speed, and high pressure/low speed) demonstrates that in the piston-cylinder interface, the force from hydrostatic pressure reaches such high magnitudes over the high-pressure stroke that less than half of it is needed to counter the load. The excess force from hydrostatic pressure then becomes the load. Consequentially, hydrodynamic pressure must counter a force from hydrostatic pressure that exceeds the original load. In the other two interfaces, by contrast, over half the load is being carried by hydrostatic pressure, thus significantly diminishing the amount of hydrodynamic pressure the interfaces are required to generate in order to achieve full load support. Moreover, nearly all of the moment on the piston is countered by hydrodynamic pressure, while less than half of the moment on the block is countered by hydrodynamic pressure, and the moment on the slipper is negligible by comparison.</p> <p> </p> <p>While this case study only investigates one pump, it shows how critical hydrodynamic pressure can be to load support in the piston-cylinder interface. The use of a low-viscosity fluid, e.g. water, reduces the hydrodynamic pressure that is generated in this interface, which, at challenging operating conditions, can lead to metal-to-metal contact. However, the performance of the interface can be improved via micro surface shaping, i.e. by giving the surface of the piston, or the bore that it moves through, a shape on the order of microns in height. The aim of present work is to pursue design trends leading to surface shapes that will enable this interface to function at higher pressures than currently achievable. </p> <p> </p> <p>This pursuit takes the form of systematic virtual design studies, an optimization procedure, and an algorithm developed specifically for tailoring the bore surfaces through which the pistons travel to piston tilt and deformation. From this emerges not only a set of design trends corresponding to the dimensions of two particularly powerful types of micro surface shaping, but also a profound insight into the behavior of the water-lubricated piston-cylinder interface fluid film, and how that behavior can be manipulated by changing the component surfaces that constitute its borders. Furthermore, in collaboration with Danfoss High Pressure Pumps, a physical prototype of a 444 cc axial piston pump with surface shaping generated via the aforementioned algorithm has been constructed and tested, achieving a total pump efficiency roughly 3% higher than that achievable by the commercial unit that the geometry of the prototype is based on.</p><br></div>
38

Parametric Analysis Of A Free Piston Stirling Engine For Spacecraft Power Applications With A Radioisotope Heat Source

Bhaskaran, Ramprasad 09 1900 (has links) (PDF)
Stirling engines are promising candidates for applications where air breathing engines cannot be used. Self contained engines capable of operating independently of the environment are required to convert thermal energy into electric power, or to perform other necessary functions. These are ideally suited for power generation onboard spacecrafts with radioisotope heat source. These engines can power interplanetary missions to Mars and beyond. The problem of parametric analysis, sensitivity and numerical optimization of Stirling cycle engine is discussed and applied to a specific example of a 2kWe free piston Stirling engine. Stirling cycle simulation programs are generated with emphasis and adaptations peculiar to free piston design for space use. Design algorithms are generated in MatLab and optimization toolbox is used for the parametric analysis adopted in this thesis. A free piston beta Stirling engine with a linear alternator configuration has been studied for the interdependency and performance effects of various important operational parameters. The analysis has been carried out in order to optimize the primary parameters, weight vis a vis envelope (length and diameter) and stroke of the engine, to make it suitable for space use. The major cycle parameters considered are operating pressure, linear speed, dead space ratio and swept volume ratio, classified as secondary parameters. The whole analysis has been carried out at a cycle temperature ratio of 0.4 for a heat source temperature of 873 K, typical of a radioisotope heat source. The optimization is carried out for the defined design requirements viz. envelope of 50 × 50 cm , stroke of less than 10 cm, and heat source temperature of 873 K. The process of parametric optimization of the primary parameters viz engine envelope and stroke are carried out with respect to the secondary parameters. Iterations are carried out on the design programs in MatLab. The results indicate that the three primary parameters have a different set each, of the secondary parameter values when optimized to the design requirement. The fmincon solver of MatLab in the optimization tool box is selected in order to validate the optimization results. The solver is used to find a minimum of a constrained nonlinear multivariable function defining the primary parameters. The results obtained concur with the optimization results generated by the design algorithm. Further, the interdependency amongst the primary and secondary parameters is studied by generating MatLab plots for all possible combinations among the various parameters. The effect of variations in the pressure and linear speed on the system envelope and stroke are more pronounced at lower range values of the pressure and speed and the variations of the primary parameter values are constant at higher ranges. The effect of dead space ratio and swept volume ratio (>1.0) is not pronounced. The requirements in the environment of space place a number of constraints upon a Stirling engine/alternator design that are not present in terrestrial applications. High specific power is achieved by designing the engine for higher pressure and frequency operation than a terrestrial Stirling engine, and by using light weight materials where appropriate. Cylinder is the heart of the engine and it forms a major proportion of the total system mass. Mass and heat loss estimates and analysis have been carried out on the cylinder for various materials of construction. Based on the analysis feasibility exists for a Cu-Ni combination. The system would have a mass of 7kg with a specific power estimate of 0.28kW/kg and a conduction heat loss to mass ratio of 159W/kg. The system obtained by numerical analysis is modeled in system simulation software SIMULATIONX. The simulation of the system is studied and a sensitivity analysis performed in order to assess the parametric interdependency of the whole free piston Stirling engine system. The system sensitivity to piston and displacer mass is studied using the simulation model. Sensitivity results indicate that there is a range of mass values within which the system is operational, mass values outside the range makes the system non-functional. Also the range is a function of various parameters and detailed analysis is required in this direction in order to further optimize all the functional parameters. Engineering approximation is carried out using the curve fitting toolbox in MatLab to generate design equations in order to provide preliminary design data for the designer, further a scaling study is carried out at various power levels in order to assess the sensitivity of system geometry at various power levels.
39

Výpočetní analýza provozních deformací válcové jednotky vznětového motoru / Computational analysis of operational deformations of the diesel engine cylinder unit

Zalibera, Tomáš January 2020 (has links)
Submitted diploma thesis deals about operational deformations in the cylinder unit of turbocharged diesel engine used in commercial vehicles. Introductory part analyses combustion engines computational modelling based on finite element method. The next step is the creation of computational models for thermal-structural analyses of the piston and engine block. In order to determine material characteristics of the head gasket, experiment is performed on the OEM gasket to determine its real behaviour under compressive load. The results shows strong nonlinear behaviour which justifies the decision of making such an experiment in the first place. The results of computational models are radial deformations of the piston and cylinder liners during load conditions. The last chapter deals with the application of these results to an advanced computational piston assembly dynamics model.
40

Instrumentation development for magnetic and structural studies under extremes of pressure and temperature

Giriat, Gaetan January 2012 (has links)
The study of the magnetic and structural properties of matter under extreme conditions is a fast developing field. With the emergence of new techniques and innovative instruments for measuring physical properties, the need for compatible pressure generating devices is constantly growing. The work described in this thesis is focused on development, construction and testing of several high pressure (HP) cells of novel design. One of the cells is intended for single crystal X-ray diffraction (SXD) studies at low temperature (LT) and the other three HP devices are designed for a Magnetic Property Measurement System (MPMS), two of which are suitable for dc susceptibility studies and the other one is aimed at high frequency ac susceptibility measurements. HP crystallographic studies are routinely carried out in diamond anvil cells (DAC) at room temperature while ambient pressure SXD studies are often conducted at LT to reduce atomic vibrations and obtain more precise structural data as well as to study LT phases. Combining HP with LT gives access to a whole new area on the phase diagrams but due to the size of the existing DACs this is generally achieved by cooling down the cells inside a cryostat and it is mainly possible at synchrotrons where dedicated facilities exist. A miniature DAC which can be used with commercially available laboratory cry-flow cooling systems and achieves pressures in excess of 10 GPa has been developed. The design of the pressure cell is based on the turnbuckle principle and therefore it was called TX-DAC. Its dimensions have been minimised using Finite Element Analysis (FEA) and the final version of the cell weighs only 2.4 g. The cell is built around a pair of 600 μm culet Boehler-Almax anvils which have large conical openings for the diffracted beam. The TX-DAC is made of beryllium copper (BeCu) alloy which has good thermal conductivity and allows quick thermal equilibration of the cell. The MPMS from Quantum Design is the most popular instrument for studies of magnetic properties of materials. It is designed to measure ac and dc magnetic susceptibility of sample with detectable signals as low as 10-8 emu. The MPMS has a sample chamber bore of 9 mm in diameter and this puts a constraint on the dimensions of the pressure cells. However, several types of clamp piston-cylinder cells and DACs have been designed for the MPMS. The former are used for measurements at pressure up to 2 GPa and the later can be used for studies at higher pressure. Taking advantage of the turnbuckle principle, a DAC (TM-DAC) and a piston-cylinder cell (TM-PCC) for dc magnetic studies were built. They allow HP measurements to be performed at the full sensitivity of MPMS. Both pressure cells are made of BeCu and their small dimensions combined with symmetrical design is the key to an ideal background signal correction. The TM-DAC is 7 mm long and 7 mm in diameter, it weighs 1.5 g and with 800 μm culet anvils it can generate a sample pressure of 10 GPa. Inherently the sample volume is limited to approximately 10-3 mm3 and the signal corresponding to this volume of some weakly magnetic material remains below the sensitivity of the MPMS. This constraint led us to the development of the TM-PCC – a piston-cylinder variant of the turnbuckle design. With a 4 mm3 sample volume it allows the study of weakly magnetic samples in the range 0-1.9 GPa. The TM-PCC uses two zirconia pistons of 2.5 mm in diameter; it is 10 mm long, 7 mm in diameter and weights 2.7 g. Conventional metallic pressure cells perform well in dc mode however in ac susceptibility measurements, the Eddy currents set in the cells’ body lead to a screening effect which can significantly obscure the signal from the sample. This problem was solved by designing a composite piston-cylinder cell made with Zylon fibre and epoxy resin. The sample is located in the middle of the cell in the 2.5 mm bore and the pressure is transmitted through zirconia pistons. Keeping the metallic parts away from the sample resolves any interference issue. The composite cell performs well in a pressure range of 0-1 GPa. The performance of the pressure cells developed within this project is illustrated by studies of various systems at high pressure.

Page generated in 0.0324 seconds