• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 99
  • 43
  • 15
  • 13
  • 12
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 239
  • 48
  • 48
  • 39
  • 37
  • 33
  • 31
  • 31
  • 30
  • 28
  • 28
  • 28
  • 23
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Tribological optimisation of the internal combustion engine piston to bore conjunction through surface modification

Howell-Smith, S. J. January 2011 (has links)
Internal combustion (IC) engines used in road transport applications employ pistons to convert gas pressure into mechanical work. Frictional losses abound within IC engines, where only 38- 51% of available fuel energy results in useful mechanical work. Piston-bore and ring-bore conjunctions are fairly equally responsible for circa 30% of all engine friction - equivalent to 1.6% of the input fuel each. Therefore, reduction in piston assembly friction would have a direct impact on specific performance and / or fuel consumption. In motorsport, power outputs and duty cycles greatly exceed road applications. Consequently, these engines have a shorter useful life and a high premium is placed on measures which would increase the output power without further reducing engine life. Reduction of friction offers such an opportunity, which may be achieved by improved tribological design in terms of reduced contact area or enhanced lubrication or both. However, the developments in the motorsport sector are typically reactive due to a lack of relative performance or an ad-hoc reliance, based upon a limited number of actual engine tests in order to determine if any improvement can be achieved as the result of some predetermined action. A representative scientific model generally does not exist and as such, investigated parameters are often driven by the supply chain with the promise of improvement. In cylinder investigations are usually limited to bore surface finish, bore and piston geometrical form, piston skirt coatings and the lubricant employed. Of these investigated areas newly emerging surface coatings are arguably seen as predominate. This thesis highlights a scientific approach which has been developed to optimise piston-bore performance. Pre-existing methods of screening and benchmarking alterations have been retained such as engine testing. However, this has been placed in the context of validation of scientifically driven development. A multi-physics numerical model is developed, which combines piston inertial dynamics, as well as thermo-structural strains within a thermoelastohydrodynamic tribological framework. Experimental tests were performed to validate the findings of numerical models. These tests include film thickness measurement and incylinder friction measurement, as well as the numerically-indicated beneficial surface modifications. Experimental testing was performed on an in-house motored engine at Capricorn Automotive, a dynamometer mounted single-cylinder 'fired' engine at Loughborough University, as well as on other engines belonging to third party clients of Capricorn. The diversity of tests was to ascertain the generic nature of any findings. The multi-physics multi-scale combined numerical-experimental investigation is the main contribution of this thesis to knowledge. One major finding of the thesis is the significant role that bulk thermo-structural deformation makes on the contact conformity of piston skirt to cylinder liner contact, thus advising piston skirt design. Another key finding is the beneficial role of textured surfaces in the retention of reservoirs of lubricant, thus reducing friction.
72

Validation of the physical effect implementation in a simulation model for the cylinder block/valve plate contact supported by experimental investigations

Wegner, Stephan, Löschner, Fabian, Gels, Stefan, Murrenhoff, Hubertus 27 April 2016 (has links) (PDF)
Overall losses in swash plate type axial piston machines are mainly defined by three tribological interfaces. These are swash plate/slipper, piston/cylinder and cylinder block/valve plate. Within a research project, funded by the German Research Foundation, a combined approach of experimental research and simulation is chosen to acquire further knowledge on the cylinder block/valve plate contact. The experimental investigations focus on the friction torque within the contact and the measurement of the cylinder block movement in all six degrees of freedom. Simultaneously a simulation model is created focusing on the main physical effects. By considering the results of the experimental investigations significant physical effects for the simulation model are assessed. Within this paper a first comparison between experimental results and the simulation is presented, showing that for a qualitative match the implemented effects (mainly the fluid film, solid body movement, solid body contact, surface deformation) are sufficient to model the general behaviour of theinvestigated pump.
73

An Investigation of the Impact of the Elastic Deformation of the End case/Housing on Axial Piston Machines Cylinder Block/Valve Plate Lubricating Interface

Chacon, Rene, Ivantysynova, Monika 27 April 2016 (has links) (PDF)
The cylinder block/valve plate interface is a critical design element of axial piston machines. In the past, extensive work has been done at Maha Fluid Power Research center to model this interface were a novel fluid structure thermal interaction model was developed which accounts for thermal and elasto-hydrodynamic effects and has been proven to give an accurate prediction of the fluid film thickness. This paper presents an in-depth investigation of the impact of the elastic deformation due to pressure and thermal loadings of the end case/housing on the performance of the cylinder block/valve plate interface. This research seeks to understand in a systematic manner the sensitivity of the cylinder block/valve plate interface to the structural design and material properties. A comparison between simulations results is done by utilizing different end case designs and material compositions, both in the valveplate and end case solids.
74

Optimization of Axial Piston Units Based on Demand-driven Relief of Tribological Contacts

Haug, Stefan, Geimer, Marcus 27 April 2016 (has links) (PDF)
Markets show a clear trend towards an ever more extensive electronic networking in mobile and stationary applications. This requires a certain degree of electronic integration of hydraulic components such as axial piston pumps. Beside some wellknow approaches, the transmission of axial piston units still is relatively unexplored regarding electronification. Nonetheless there is a quite high potential to be optimized by electronic. In view of this fact, the present paper deals with the tribological contacts of pumps based on a demand driven hydrostatic relief. The contact areas at cylinder - distributor plate, cradle bearing and slipper - swash plate will be investigated in detail and it will be shown how the pump behavior can be improved considerably through a higher level of relief and a central remaining force ratio. The potential of optimization is to improve the efficiency, especially in partial loaded operation, power range, also for multi quadrant operation, precision and stability. A stable lubricating film for slow-speed running and for very high speeds at different pressures is ensured as well.
75

Tribolayer Formation on Bronze Cu Sn12Ni2 in the Tribological Contact between Cy linder and Cont rol Plate in an Axial Piston Pump with Swashplate Design

Paulus, Andreas, Jacobs, Georg 02 May 2016 (has links) (PDF)
The present study investigates the f ormation of tribolayers on bronze CuSn12Ni2. Two different test rigs are used, of which one is a sliding bearing test rig in order to perform lubricated thrust bearing tests. Bronze CuSn12Ni2 is used for the sliding elements and the counter body is made of C45 steel. In addition to that, an axial piston pump test rig was used to determine t he transfera bility of the results to th e axial pist on pump. The test conditions are set up in a way t hat the tribological load s in the contacts are similar to each other. Changes in the subsurfa ce morphology and the chemical composition of the tribolayer were analysed using electron pro be micro a nalysis (EPMA), trans mission electron microscopy (TEM), energy dispersive X -ray spectro scopy (EDS) and X-ra y photoelectron spectroscopy (XPS). Focused ion beam (FIB) milling was used to prepare site -specific TE M foils fro m the wear track. The formation of a nano scale tribolayer was associat ed with red uced wear, which leads to low leak age in the a xial piston pump. This tribolayer is enriched with oxygen, sulfur and zinc, which is an effect of tribochemical reactions of environment molecules and surface molecules.
76

Design, simulation, manufacture and testing of a free-piston Stirling engine

Deetlefs, Ivan Niell 12 1900 (has links)
Thesis (MEng) -- Stellenbosch University, 2014. / ENGLISH ABSTRACT: The aim of this study was to design and manufacture an experimentally testable free-piston Stirling engine (FPSE), including a linear electric generator; to develop and validate a theoretical simulation model; to identify problem areas pertaining to its manufacture; and finally to assess the work undertaken, to lay out the groundwork for the future development of a 3 kWe FPSE suitable for incorporation in a solar Stirling dish power generator. A redesigned version of the Beale B- 10B demonstrator engine was manufactured to overcome design diffculties and to simplify testing. The design made use of an electric generator designed at the Department of Electrical and Electronic Engineering at Stellenbosch University. Experimental measurements included piston and displacer motions, hot side and cold side temperatures, working space pressure, electric generator output, as well as heat rejection via a water jacket. Experimental measurements were taken prior to and subsequent to the addition of the electric generator. Indicated power was calculated as 0,659 W at a frequency of 10,99 Hz prior to the addition of the electric generator. The addition of the electric generator was unsuccessful since it was not well matched with the engine. The indicated power calculated was between 0,138 W and 0,144 W for different loads on the electric generator, while the electrical output power ranged from 1,23 mWe to 1,79 mWe. The addition of the electric generator produced non-continuous motion caused by magnetic forces instead of engine pressure variations. The major manufacturing diffculty was the attachment of magnets for the electric generator, but this was overcome with the manufacture of a special assembly jig. The theoretical simulation model was a combination of a third-order and dynamic analysis. Working space values were solved by the application of the conservation of mass, momentum and energy equations for a one-dimensional discretised model of the engine, while the motion of the piston and displacer was determined by applying the equations of motion. The majority of experimental measurements were predicted more accurately when higher heat transfer coeficients were used between the working space and wall temperatures. The theoretical simulation model was used to gain insight into the effect of input parameters on engine operation. The displacer rod diameter was shown to have implications on output power and stability, while it was shown that there is a natural tendency to deliver constant output power at a near-constant frequency over a range of piston loads for an FPSE. It was also shown that the design of an FPSE is complex and that the design of all components should be done in parallel. The control of an FPSE was seen to be both a necessity and can be used to exploit the advantages of the uncoupled nature of an FPSE. / AFRIKKANSE OPSOMMING: Die doel van hierdie studie was om 'n eksperimentele toetsbare vrye-werksuier Stirling enjin te vervaardiging, wat 'n lineêre elektriese kragopwekker insluit; om 'n teoretiese simulasie model te ontwikkel en te yk; om vervaardiging probleme te identi seer; en om die ondernemende werk te assesseer om 'n fondasie te lê vir die toekomstige ontwikkeling van 'n 3 kWe vrye-werksuier Stirling enjin wat by 'n Stirling sonskottel ingelyf kan word. 'n Herontwerpte weergawe van die Beale B-10B demonstrasie enjin was vervaardig om ontwerp probleme te bowe te kom en om die toets daarvan te vereenvoudig. Die ontwerp het gebruik gemaak van 'n elektriese kragopwekker wat by die Departement Elektriese en Elektroniese Ingenieurswese aan die Universiteit van Stellenbosch ontwerp is. Eksperimentele metings het die werksuier en verplaser bewegings ingesluit, sowel as die warm kant en koue kant temperature, die werkruimte druk, die elektriese uitset van die kragopwekker, sowel as die hitteuitruiling wat met 'n water verkoelingskringloop gepaard gaan. Eksperimentele metings was geneem voor en na die byvoeging van die elektriese kragopwekker. Kraglewering was bereken op 0,659 W teen 'n frekwensie van 10,99 Hz voordat die elektriese kragopwekker bygevoeg is. Die byvoeging van die elektriese kragopwekker was onsuksesvol omdat die nie gepas was vir die enjin nie. Die kraglewering is bereken op vlakke wat gewissel het tussen 0,138 W en 0,144 W vir die verskillende belastings op die elektriese kragopwekker, terwyl die elektriese uitset gewissel het tussen 1,23 mWe en 1,79 mWe. Die byvoeging van die elektriese kragopwekker het 'n nie-aaneenlopende beweging veroorsaak weens die magnetiese kragte wat dit beinvloed het in plaas van enjindruk variasies. Die belangrikste ontwerpuitdagings was die ontwerp van 'n werksuier en verplaser wat 'n klein toleransie passing kon handhaaf om sodoende 'n seël te verseker terwyl dit aan temperatuur variasies blootgestel was. Die grootste vervaardigingsprobleem was die aanheg van magnete vir die elektriese kragopwekker, maar dit is te bowe gekom deur 'n spesiale voeg te vervaardig. Die teoretiese simulasie model was 'n kombinasie van 'n derde-orde en 'n dinamiese analise. Werkruimte waardes was opgelos deur die toepassing van die behoud van massa, momentum en energie vergelykings vir 'n een-dimensionele gediskretiseerde model van die enjin, terwyl die beweging van die werksuier en verplaser bepaal was deur die toepassing van die bewegingvergelykings. Die meerderheid van die eksperimentele metings was meer akkuraat voorspel wanneer hoër warmteoordrag koë siënte tussen die werkruimte en muurtemperature gebruik was. Die teoretiese simulasie model was gebruik om insig in terme van die e ek van invoer veranderlikes op die enjin gedrag te toon. Daar was getoon dat die verplaserstaaf diameter implikasies het op kragoplewering en stabiliteit, terwyl die natuurlike tendens van 'n vrye-werksuier Stirling enjin gewys was om 'n konstante kraguitvoer te lewer op 'n naby-konstante frekwensie oor 'n reeks werksuier laste. Daar was ook gewys dat die ontwerp van 'n vryewerksuier Stirling enjin kompleks is en dat die ontwerp van alle komponente in parallel gedoen moet word. Die beheer van 'n vrye-werksuier Stirling enjin was gewys om beide noodsaaklik te wees, sowel as gebruik kan word om die unieke voordele van 'n vrye-werksuier Stirling enjin se ongekoppelde natuur te ontgin.
77

Design analysis of a lomolding machine

Goussard, Charl Leonard 12 1900 (has links)
Thesis (PhD (Mechanical and Mechatronic Engineering))--University of Stellenbosch, 2007. / This dissertation describes the design analysis of a lomolder (a machine similar to an injection moulding machine). It focuses on key design aspects that will drive the purchase cost of the machine and that will also influence the maintenance and operating cost. The main objective of the study is to provide an understanding of the key factors that influence the cost of a lomolder as well as the factors that contributes to a quality manufactured part. A semi-analytical flow model was developed to predict cavity pressure drops for a range of part sizes. This model was necessary to eliminate time consuming numeric simulations required for machine optimisation. Numerous machine concept designs were developed and a final layout design chosen. A parametric CAD model was built for the lomolder. Layout designs for different sized lomolders can be generated with this model. The dissertation concludes with a cost study that focuses on the purchase cost of a lomolder unit. Key elements such as choice of actuator and piston to part area ratio are described.
78

A mechanical model of an axial piston machine

Löfstrand Grip, Rasmus January 2009 (has links)
<p>A mechanical model of an axial piston-type machine with a so-called wobble plate and Z-shaft mechanism is presented. The overall aim is to design and construct an oil-free piston expander demonstrator as a first step to realizing an advanced and compact small-scale steam engine system. The benefits of a small steam engine are negligible NOx emissions (due to continuous, low-temperature combustion), no gearbox needed, fuel flexibility (e.g., can run on biofuel and solar), high part-load efficiency, and low noise. Piston expanders, compared with turbines or clearance-sealed rotary displacement machines, have higher mechanical losses but lower leakage losses, much better part-load efficiency, and for many applications a more favourable (i.e., lower) speed. A piston expander is thus feasible for directly propelling small systems in the vehicular power range. An axial piston machine with minimized contact pressures and sliding velocities, and with properly selected construction materials for steam/water lubrication, should enable completely oil-free operation. An oil-free piston machine also has potential for other applications, for example, as a refrigerant (e.g., CO<sub>2</sub>) expander in a low-temperature Rankine cycle or as a refrigerant compressor.</p><p> </p><p>An analytical rigid-body kinematics and inverse dynamics model of the machine is presented. The kinematical analysis generates the resulting motion of the integral parts of the machine, fully parameterized. Inverse dynamics is applied when the system motion is completely known, and the method yields required external and internal forces and torques. The analytical model made use of the “Sophia” plug-in developed by Lesser for the simple derivation of rotational matrices relating different coordinate systems and for vector differentiation. Numerical solutions were computed in MATLAB. The results indicate a large load bearing in the conical contact surface between the mechanism’s wobble plate and engine block. The lateral force between piston and cylinder is small compared with that of a comparable machine with a conventional crank mechanism.</p><p> </p><p>This study aims to predict contact loads and sliding velocities in the component interfaces. Such data are needed for bearing and component dimensioning and for selecting materials and coatings. Predicted contact loads together with contact geometries can also be used as input for tribological rig testing. Results from the model have been used to dimension the integral parts, bearings and materials of a physical demonstrator of the super-critical steam expander application as well as in component design and concept studies.</p>
79

Development of Methods for Retrospective Ultrasound Transmit Focusing

Warriner, Renee 07 January 2013 (has links)
Single frame ultrasound B-mode image quality is largely governed by the ability to focus the ultrasound beam over a range in depths both in transmission and reception. By developing a comprehensive understanding of acoustic wave propagation two signal processing methods were identified for solving the transmission problem. We made use of both the impulse response using the classical point spread function (PSF) and the spatial sensitivity function (SSF) which describes the spatial distribution at a particular time. Using the angular spectrum method, an accurate analytical model was developed for the field distribution arising from a finite geometry, apodized and focused, plane piston transducer. While there is a thorough understanding of the radiated field arising from uniformly excited plane piston transducers, the focused equivalent (i.e., one that allows a continuous change in phase over the plane piston surface) is incomplete and assumes the Fresnel approximation. Our model addresses the effects of diffraction and evanescent waves without the use of the Fresnel approximation and is applicable at all near- and far-field locations in a lossless medium. The model was analyzed to identify new insights into wave propagation and compared with the Fresnel approximation and the spherically-focused, concave transducer. The piston transducer model was then extended to an attenuating and dispersive medium. After analysing existing models of power-law frequency dependent attenuation, a causal, spherical wave Green’s function was derived from the Navier-Stokes equation for a classical viscous medium. Modifications to the angular spectrum method were presented and used to analyze the radiated field of a focused, planar piston transducer. Finally, after presenting our signal processing strategy for improving imaging spatial resolution through minimization of the SSF, two signal processing methods were derived and analysed in simulation: a deconvolution technique to remove the effects of the ultrasound excitation wave and suppress additive noise from the received ultrasound signal, and a retrospective transmit focusing method that changed the response from a predefined transmit focus to an arbitrary transmit focal depth. Proof-of-concept simulations were presented using a variable number of scatterers and compared with the traditional matched filtering and envelope detection technique.
80

Numerical and Experimental Analysis of a TurboPiston Pump

Kent, Jason A. 14 May 2010 (has links)
The TurboPiston Pump was invented to make use of merits such as, high flow rates often seen in centrifugal pumps and high pressures associated with positive displacement pumps. The objective of this study is to manufacture a plastic model 12” TurboPiston Pump to demonstrate the working principle and a metal prototype for performance testing. In addition, this research includes the study of the discharge valve to estimate the valve closing time and fluid mass being recycled back into the cylinder through hand calculations. Furthermore, a transient simulation was performed in CFD using Fluent to provide a better estimate of what will happen in the actual pump while running. Additionally, an experimental rig was designed to investigate the performance of the first generation valve on the TurboPiston Pump known as the flapper valve. Means to improve the hydrodynamic performance of both valves have been identified for future study.

Page generated in 0.07 seconds