• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 204
  • 147
  • 52
  • 38
  • 10
  • 9
  • 8
  • 8
  • 6
  • 3
  • 1
  • 1
  • Tagged with
  • 546
  • 152
  • 138
  • 128
  • 124
  • 119
  • 87
  • 81
  • 61
  • 57
  • 57
  • 56
  • 53
  • 50
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Confinement effects in shallow water jets

Shinneeb, AbdulMonsif 29 August 2006 (has links)
The effects of vertical confinement on a neutrally-buoyant turbulent round jet discharging from a circular nozzle into quiescent shallow water were investigated. The focus was on identifying changes in the mean flow, turbulence characteristics, and large vortical structures of a horizontal water jet at different degrees of vertical confinement. The confinement resulted from the proximity of a lower solid wall and an upper free surface. The jet exit Reynolds number for all cases was 22,500. The depth of the water layer was the principal parameter. The axial and lateral confinements were negligible. Three different degrees of vertical confinement were investigated in addition to the free jet case. For the confined cases, the water layer depth was 15, 10 and 5 times the jet exit diameter. The centreline of the jet was located midway between the solid wall and the free surface. Particle image velocimetry (PIV) was used to investigate the flow behaviour. Measurements were taken on two orthogonal planes along the jet axis; one parallel and one perpendicular to the free surface. For each case, measurements were taken at three locations downstream of the jet exit where the effects of vertical confinement were expected to be significant. All image pairs were acquired at a frequency of 1 Hz using a 2048  2048 pixel camera. This rate was slow enough that the velocity fields were uncorrelated. At each location, two thousand image pairs were acquired in order to extract statistical information about the behaviour of the flow. <p>After completing the cross-correlation analysis of the PIV images and filtering outliers using a cellular neural network with a variable threshold, the statistical quantities such as mean velocities, turbulence intensities, Reynolds shear stress, centreline velocity decay, centreline turbulence intensities, and spread rate were obtained. The proper orthogonal decomposition (POD) technique was applied to the PIV data using the method of snapshots to expose vortical structures. The number of modes used for the POD reconstruction was selected to recover ~40% of the turbulent kinetic energy. An automated method was employed to identify the position, size, and strength of the vortices by searching for closed streamlines in the POD reconstructed velocity fields. This step was followed by a statistical study to understand the effect of vertical confinement on the frequency of vortex occurrence, size, strength, rotational sense, and preferred locations.<p>The results showed that the structure of the flow underwent significant changes because of the vertical confinement. The axial velocity profiles in the vertical plane become almost uniform over the entire depth with a mild peak below the centreline of the jet for the shallowest case, while the axial velocity profiles in the horizontal plane are Gaussian but narrower than the free jet profile. The mean vertical and horizontal velocity profiles show that fluid is drawn from the sides of the jet to its centreline and then diverted upward and downward from the jet axis. The decay rate of the mean centreline velocity becomes slower at downstream locations and the jet width becomes narrower in the horizontal mid-plane compared to the free jet case. The mixing efficiency of the fluid in the vertical plane is significantly inhibited by the confinement while there is a slight effect in the horizontal plane. Also, with increasing vertical confinement, the wall jet characteristics become more dominant. Investigation of the coherent structures revealed that at intermediate distances from the exit the population of vortical structures of either rotational sense is almost identical for all vortex sizes. At downstream locations in the vertical plane, this distribution is changed by the vertical confinement which causes a significant increase in the number of small clockwise vortices. In addition, it was observed that, as the confinement increases, the total number of vortical structures decreases and their sizes increase. This is evidence of the pairing process. Moreover, with increasing confinement the circulation decreases as the flow proceeds downstream on the vertical plane with a corresponding increase in the horizontal plane. This behaviour is consistent with the turbulence intensity results.
102

Particle Image Velocimetry Near the Leading Edge of a Sikorsky SSC-A09 Wing During Dynamic Stall

Vannelli, Rachel Renee 2011 December 1900 (has links)
Dynamic stall has proven to be a complex problem in helicopter aerodynamics because it limits the helicopter flight regime. Dynamic stall is characterized by drastic increases in lift and a delay of stall due to rapid pitching motions of aerodynamic surfaces. Prediction and control of dynamic stall requires an understanding of the leading edge flow structure. An investigation was conducted of dynamic stall near the leading edge of a large-scale Sikorsky SSC-A09 airfoil, dynamically pitching about its quarter chord, under realistic helicopter flight conditions (M_infinity = 0.1, k = 0.1, Re_c = 1.0 x 10^6). A testing model with a chord of 0.46 m and a span of 2.13 m was designed and constructed for experimentation in the Dynamic Stall Facility at Texas A&M University. Particle image velocimetry data were recorded for the first 15% of the airfoil chord. Mean velocities, Reynolds stresses, and vorticity were computed. Analyses revealed that during the upstroke, stall onset is delayed in the leading edge region and the first indications of separation are observed at 18 degree angle of attack. The edge of the boundary layer has been characterized for alpha = 18 degrees. The roles of the Reynolds stresses and vorticity are examined.
103

Experimental study on rectangular barge in beam sea

Jung, Kwang-Hyo 29 August 2005 (has links)
This study presents laboratory observations of flow characteristics for regular waves passing a rectangular barge in a two dimensional wave tank. The rectangular barge was fixed and free to roll (one degree of freedom) in a beam sea. Particle image velocimetry (PIV) was employed to measure the velocity field in the vicinity of the structure. The mean velocity and turbulence properties were obtained by phase-averaging the velocity profiles from repeated test runs. The quantitative flow characteristics were represented to elucidate the coupled interactions between the regular wave and the barge in roll motion or fixed condition. Additionally, the turbulence properties including the turbulence length scale and the turbulent kinetic energy budget were investigated to characterize the flow pattern due to the wave interaction. Because all the data including wave elevations, roll motion, and dynamic pressure were synchronized with velocity profiles, the results between the roll motion and the fixed condition were compared. The viscous effects due to the flow separation depend on the relative relation between the wave water particle motion and the roll motion of the barge. The viscous damping mechanism that reduces the roll motion at the roll natural period wave is illustrated. It shows that the vortex flow was mainly induced by the roll motion. For wave periods longer than the roll natural period, the flow was separated in different directions accompanying the roll natural period wave. The longer waves may help the roll motion with the vortex flow predominantly separated by the wave water particle motion rather than the barge motion. This may be called the viscous exciting effect. Moreover, the variations of dynamic pressures near the corners were measured and analyzed along with the viscous effect for both the roll motion and the fixed barge cases.
104

Microbubble drag reduction phenomenon study in a channel flow

Jimenez Bernal, Jose Alfredo 01 November 2005 (has links)
An experimental study on drag reduction by injection of microbubbles was performed in the upper wall of a rectangular channel at Re = 5128. Particle Image Velocimetry measurement technique (PIV) was used to obtain instantaneous velocity fields in the x-y plane. Microbubbles, with an average diameter of 30??m, were produced by electrolysis using platinum wires with a diameter of 76 ??m. They were injected in the buffer layer producing several different values of local void fraction. A maximum drag reduction of 38.45% was attained with a local void fraction of 4.8 %. The pressure drop in the test station was measured by a reluctance pressure transducer. Several parameters such as velocity profile, turbulent intensities, skewness, flatness, joint probability density function (JPDF), enstrophy, one and two-dimensional energy spectra were evaluated. The results indicate that microbubbles reduced the intermittency of the streamwise fluctuating component in the region near the wall. At the same time they destroy or reduce the vortical structures regions (high shear zones) close to the wall. They also redistribute the energy among different eddy sizes. An energy shift from larger wavenumbers to lower wavenumbers is observed in the near wall region (buffer layer). However, outside this region, the opposite trend takes place. The JPDF results indicate that there is a decrease in the correlation between the streamwise and the normal fluctuating velocities, resulting in a reduction of the Reynolds stresses. The results of this study indicate that pursuing drag reduction by injection of microbubbles in the buffer layer could result in great saving of energy and money. The high wavenumber region of the one dimensional wavenumber spectra was evaluated from PIV spatial information, where the maximum wavenumber depends on the streamwise length (for streamwise wavenumber) of the recorded image and the minimum wavenumber depends on the distance between vectors. On the other hand, the low wavenumber region was calculated from the PIV temporal information by assuming Taylor??s frozen hypothesis. This new approach allows obtaining the energy distribution of a wider wavenumber region.
105

Development of scalar and velocity imaging diagnostics for supersonic hypermixing strut injector flowfields

Burns, Ross Andrew 03 February 2015 (has links)
A new diagnostic technique for studying the turbulent mixing characteristics of supersonic mixing flowfields is developed and implemented in two Mach 3 mixing flowfields. The diagnostic utilizes simultaneous particle image velocimetry and quantitative planar laser-induced fluorescence of krypton gas to study the interaction between turbulent scalar and velocity fields. The fluorescence properties of krypton gas are determined; measurements of the pressure and temperature dependence of the collisional quenching rates and cross-sections are made for various mixtures with krypton. The gases tested in this fashion include helium, nitrogen, air, oxygen, and ethylene. Additional measurements are performed to measure the relative two-photon absorption cross-section for krypton gas. The non-dimensional quenching rates are found to follow a power-law dependence for temperature, while the pressure dependence of the total quenching rate is found to be linear. Two injection flowfields are studied for their general topology and kinematic characteristcs. The first injector model is a basic injector meant to serve as a baseline case; there are no hypermixing elements present in this model. The second model is an asymmetric, unswept hypermixing injector featuring 15 degree expansive ramps flanking a central block. These studies utilize particle image velocimetry in planar and stereoscopic configurations in various planes. Results for the mean flowfield show distinct differences between the two flowfields; the planar injector flowfield is shown to be highly two-dimensional and exhibits minimal coherent unsteady behavior. The hypermixing injector flowfield exhibits a highly three-dimensional wake, with a pair of stream-wise vortices driving both mean deviations in the flowfield and considerable vortical coupling in the span-wise direction. Simultaneous krypton PLIF and PIV are employed in the two mixing flowfields. An assay of the dependence of the krypton mole fraction calculations on the fluorescence signal is performed. The overall sensitivity and the resulting dynamic range of the calibration is dictated largely by the reference mole fraction. Additionally, several different theoretical models of the temperature dependence of the fluorescence signal are studied to assess their validity and influence over the PLIF calibration procedure. Finally, the technique is employed in the two mixing flowfields, and a brief analysis of the mean and unsteady behavior of the two is conducted. / text
106

Velocity field measurements around Taylor bubbles rising in stagnant and upward moving liquids

2013 September 1900 (has links)
Gas-liquid, two-phase flow is encountered in a wide variety of industrial equipment. A few examples are steam generators, condensers, oil and gas pipelines, and various components of nuclear reactors. Slug flow is one of the most common and complex flow patterns and it occurs over a broad range of gas and liquid flow rates. In vertical tubes, most of the gas is located in large, bullet-shaped bubbles (Taylor bubbles) which occupy most of the pipe cross section and move with a relatively constant velocity. The objectives of this work are to increase our understanding of slug flow in vertical tubes, to provide reliable data for validation of numerical models developed to predict the behaviour of slug flow, to interpret the behaviour of Taylor bubbles based on knowledge of the velocity field, and to determine the shape of the Taylor bubbles rising in stagnant and upward flowing liquid under various experimental conditions. To achieve these objectives, an experimental facility was designed and constructed to provide instantaneous two-dimensional (2-D) velocity field measurements using particle image velocimetry (PIV) around Taylor bubbles rising in a vertical 25 mm tube containing stagnant or upward moving liquids at Reynolds number based on the superficial liquid velocity (ReL = 250 to 17,800). The working fluids were filtered tap water and mixtures of glycerol and water (µ = 0.0010, 0.0050 and 0.043 Pa•s) and air. Mean axial and radial velocity profiles, axial turbulence intensity profiles, velocity vectors, and streamlines are presented for Taylor bubbles rising in stagnant and upward flowing liquids. The measurements were validated by a mass balance around the nose of the bubble. In stagnant liquids, the size of the primary recirculation zone in the near wake of the Taylor bubble depends on the inverse viscosity. For low viscosity liquid, the length of the primary recirculation zone is 1.23D (D is the tube diameter), for the intermediate viscosity it is 1.2D, and for the high viscosity it is 0.68D. Based on the velocity measurements, the minimum stable liquid slug length (the minimum distance needed to re-establish a fully-developed velocity distribution in the liquid in front of the trailing Taylor bubble) for stagnant cases was found to be in the range of 2~12D. In the flowing liquid, the flow structure of the wake depends on the relative motion between the two phases and the liquid viscosity. The wake is turbulent in all cases except at high viscosity where the wake is transitional. In general, the length of the primary recirculation zone increases with increasing liquid flow rate. For low viscosity cases, in a frame of reference moving at the bubble velocity, the length of the recirculation zone is 1.73D for ReL =9,200 and become essentially constant at 1.90D for ReL ≥ 13,600. For the intermediate viscosity, the length of the recirculation zone is 1.22D for ReL = 1,500. The length of the recirculation zone is increased to 1.34D for ReL = 3,900. For the high viscosity, the length of the recirculation region is elongated to 1.4D for ReL = 260. As the liquid flow rate increases the oscillations of the bottom surface increase and the number of small bubbles shed from the bubble bottom increases. The liquid slug minimum stable length for turbulent upward flowing liquid is around 12D. For laminar flow, the minimum stable length is 10D for ReL = 260 (high viscosity) and > 28D for ReL=1,500 (intermediate viscosity) and depends on the wake flow pattern and the liquid flow rate.
107

PIV/OH-PLIF同時計測によるスリットバーナの燃焼場の検討

YAMASHITA, Hiroshi, HAYASHI, Naoki, YAMAMOTO, Kazuhiro, ITO, Yuki, OKU, Yohei, 山下, 博史, 林, 直樹, 山本, 和弘, 伊藤, 雄貴, 奥, 洋平 11 1900 (has links)
No description available.
108

Experimental investigation of pore scale velocity within micro porous media

Sen, Debjyoti Unknown Date
No description available.
109

乱流燃焼場のPIV計測と乱れスケールの算出

山本, 和弘, YAMAMOTO, Kazuhiro, 井上, 聡, INOUE, Satoshi, 山下, 博史, YAMASHITA, Hiroshi, 下栗, 大右, SHIMOKURI, Daisuke, 石塚, 悟, ISHIZUKA, Satoru, 小沼, 義昭, ONUMA, Yoshiaki 11 1900 (has links)
No description available.
110

Effects of pressure gradient on two-dimensional separated and reattached turbulent flows

Shah, Mohammad Khalid 15 January 2009 (has links)
An experimental program is designed to study the salient features of separated and reattached flows in pressure gradients generated in asymmetric diverging and converging channels. The channels comprised a straight flat floor and a curved roof that was preceded and followed by straight parallel walls. Reference measurements were also made in a parallel-wall channel to facilitate the interpretation of the pressure gradient flows. A transverse square rib located at the start of convergence/divergence was used to create separation inside the channels. In order to simplify the interpretation of the relatively complex separated and reattached flows in the asymmetric converging and diverging channels, measurements were made in the plain converging and diverging channel without the rib on the channel wall. All the measurements were obtained using a high resolution particle image velocimetry technique. The experiments without the ribs were conducted in the diverging channel at Reynolds number based on half channel depth (Reh) of 27050 and 12450 and in the converging channel at Reh = 19280. For each of these three test conditions, a high resolution particle image velocimetry technique (PIV) was used to conduct detailed velocity measurements in the upstream parallel section, within the converging and diverging section, and downstream of the converging and diverging sections. From these measurements, the boundary layer parameters and profiles of the mean velocities, turbulent quantities as well as terms in the transport equations for turbulent kinetic energy and Reynolds stresses were obtained to document the effects of pressure gradient on the flow. In the adverse pressure gradient case, the turbulent quantities were enhanced more significantly in the lower boundary layer than the upper boundary layer. On the other hand, favorable pressure gradient attenuated the turbulence levels and the effect was found to be similar on both the upper and the lower boundary layers. For the separated and reattached flows in the converging, diverging and parallel-wall channels at Reh = 19440, 12420 and 15350, respectively. The Reynolds number based on the approach velocity and rib height was Rek  2700. From these measurements, profiles of the mean velocities, turbulent quantities and the various terms in the transport equations for turbulent kinetic energy and Reynolds stresses were also obtained. The flow dynamics in the upper boundary layer in the separated region and the early stages of flow redevelopment were observed to be insensitive to the pressure gradients. In the lower boundary layer, however, the flow dynamics were entirely dominated by the separated shear layer in the separated region as well as the early region of flow redevelopment. The effects of the separated shear layer diminished in the redevelopment region so that the dynamics of the flow were dictated by the pressure gradients. The proper orthogonal decomposition (POD) was applied to educe the dominant large scale structures in the separated and reattached flows. These dominant scales were used to document structural differences between the canonical upstream flow and the flow field within the separated and redeveloping region. The contributions of these dominant structures to the dynamics of the Reynolds normal and shear stresses are also presented and discussed. It was observed that the POD recovers Reynolds shear stress more efficiently than the turbulent kinetic energy. The reconstruction reveals that large scales contribute more to the Reynolds shear stress than the turbulent kinetic energy.

Page generated in 0.0564 seconds