• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 204
  • 147
  • 52
  • 38
  • 10
  • 9
  • 8
  • 8
  • 6
  • 3
  • 1
  • 1
  • Tagged with
  • 546
  • 152
  • 138
  • 128
  • 124
  • 119
  • 87
  • 81
  • 61
  • 57
  • 57
  • 56
  • 53
  • 50
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

The Use of End Plates for a Cylinder in the Sub-critical Flow Regime

Blackmore, Adam 11 August 2011 (has links)
Experiments were conducted in a free-surface, re-circulating water channel to determine the dependence of spanwise flow uniformity in the near wake of a circular cylinder on the end conditions using Particle Image Velocimetry. The Reynolds number was 10,000. The end conditions consisted of plates with different leading edge geometries and configurations. A cylinder bounded by two endplates with sharp leading edge geometry generated the most uniform near wake. The horseshoe vortex dynamics in the cylinder/ wall and cylinder/endplate junctions were also studied. Upstream flow separation significantly altered the behavior of the horse shoe vortices. Periodic horse shoe vortex oscillation was found for experiments with the upstream flow attached; this periodic oscillation was disrupted with the presence of upstream flow separation. The endplate leading edge distance was also investigated. The oscillation frequency of the horse shoe vortex system was found to decrease with increasing leading edge distance.
92

Flow of a non-Newtonian Bingham plastic fluid over a rotating disk

Rashaida, Ali A 19 August 2005
Even though fluid mechanics is well developed as a science, there are many physical phenomena that we do not yet fully understand. One of these is the deformation rates and fluid stresses generated in a boundary layer for a non-Newtonian fluid. One such non-Newtonian fluid would be a waxy crude oil flowing in a centrifugal pump. This type of flow can be numerically modeled by a rotating disk system, in combination with an appropriate constitutive equation, such as the relation for a Bingham fluid. A Bingham fluid does not begin to flow until the stress magnitude exceeds the yield stress. However, experimental measurements are also required to serve as a database against which the results of the numerical simulation can be interpreted and validated. The purpose of the present research is to gain a better understanding of the behavior of a Bingham fluid in the laminar boundary layer on a rotating disk. For this project, two different techniques were employed: numerical simulation, and laboratory investigations using Particle Image Velocimetry (PIV) and flow visualization. Both methods were applied to the flow of a Bingham fluid over a rotating disk. In the numerical investigations, the flow was characterized by the dimensionless yield stress Bingham number, By, which is the ratio of the yield and viscous stresses. Using von Kármáns similarity transformation, and introducing the rheological behavior of the fluid into the conservation equations, the corresponding nonlinear two-point boundary value problem was formulated. A solution to the problem under investigation was obtained by numerical integration of the set of Ordinary Differential Equations (ODEs) using a multiple shooting method. The influence of the Bingham number on the flow behavior was identified. It decreases the magnitude of the radial and axial velocity components, and increases the magnitude of the tangential velocity component, which has a pronounced effect on the moment coefficient, CM, and the volume flow rate, Q. In the laboratory investigations, since the waxy crude oils are naturally opaque, an ambitious experimental plan to create a transparent oil that was rheologically similar to the Amna waxy crude oil from Libya was developed. The simulant was used for flow visualization experiments, where a transparent fluid was required. To fulfill the demand of the PIV system for a higher degree of visibility, a second Bingham fluid was created and rheologically investigated. The PIV measurements were carried out for both filtered tap water and the Bingham fluid in the same rotating disk apparatus that was used for the flow visualization experiments. Both the axial and radial velocity components in the (r-z) plane were measured for various rotational speeds. Comparison between the numerical and experimental results for the axial and radial velocity profiles for water was found to be satisfactory. Significant discrepancies were found between numerical results and measured values for the Bingham fluid, especially at low rotational speeds, mostly relating to the formation of a yield surface within the tank. Even though the flow in a pump is in some ways different from that of a disk rotating in a tank, some insight about the behavior of the pump flow can be drawn. One conclusion is that the key difference between the flow of a Bingham fluid in rotating equipment from that of a Newtonian fluid such as water relates to the yield surface introduced by the yield stress of the material, which causes an adverse effect on the performance and efficiency of such equipment.
93

Confinement effects in shallow water jets

Shinneeb, AbdulMonsif 29 August 2006
The effects of vertical confinement on a neutrally-buoyant turbulent round jet discharging from a circular nozzle into quiescent shallow water were investigated. The focus was on identifying changes in the mean flow, turbulence characteristics, and large vortical structures of a horizontal water jet at different degrees of vertical confinement. The confinement resulted from the proximity of a lower solid wall and an upper free surface. The jet exit Reynolds number for all cases was 22,500. The depth of the water layer was the principal parameter. The axial and lateral confinements were negligible. Three different degrees of vertical confinement were investigated in addition to the free jet case. For the confined cases, the water layer depth was 15, 10 and 5 times the jet exit diameter. The centreline of the jet was located midway between the solid wall and the free surface. Particle image velocimetry (PIV) was used to investigate the flow behaviour. Measurements were taken on two orthogonal planes along the jet axis; one parallel and one perpendicular to the free surface. For each case, measurements were taken at three locations downstream of the jet exit where the effects of vertical confinement were expected to be significant. All image pairs were acquired at a frequency of 1 Hz using a 2048  2048 pixel camera. This rate was slow enough that the velocity fields were uncorrelated. At each location, two thousand image pairs were acquired in order to extract statistical information about the behaviour of the flow. <p>After completing the cross-correlation analysis of the PIV images and filtering outliers using a cellular neural network with a variable threshold, the statistical quantities such as mean velocities, turbulence intensities, Reynolds shear stress, centreline velocity decay, centreline turbulence intensities, and spread rate were obtained. The proper orthogonal decomposition (POD) technique was applied to the PIV data using the method of snapshots to expose vortical structures. The number of modes used for the POD reconstruction was selected to recover ~40% of the turbulent kinetic energy. An automated method was employed to identify the position, size, and strength of the vortices by searching for closed streamlines in the POD reconstructed velocity fields. This step was followed by a statistical study to understand the effect of vertical confinement on the frequency of vortex occurrence, size, strength, rotational sense, and preferred locations.<p>The results showed that the structure of the flow underwent significant changes because of the vertical confinement. The axial velocity profiles in the vertical plane become almost uniform over the entire depth with a mild peak below the centreline of the jet for the shallowest case, while the axial velocity profiles in the horizontal plane are Gaussian but narrower than the free jet profile. The mean vertical and horizontal velocity profiles show that fluid is drawn from the sides of the jet to its centreline and then diverted upward and downward from the jet axis. The decay rate of the mean centreline velocity becomes slower at downstream locations and the jet width becomes narrower in the horizontal mid-plane compared to the free jet case. The mixing efficiency of the fluid in the vertical plane is significantly inhibited by the confinement while there is a slight effect in the horizontal plane. Also, with increasing vertical confinement, the wall jet characteristics become more dominant. Investigation of the coherent structures revealed that at intermediate distances from the exit the population of vortical structures of either rotational sense is almost identical for all vortex sizes. At downstream locations in the vertical plane, this distribution is changed by the vertical confinement which causes a significant increase in the number of small clockwise vortices. In addition, it was observed that, as the confinement increases, the total number of vortical structures decreases and their sizes increase. This is evidence of the pairing process. Moreover, with increasing confinement the circulation decreases as the flow proceeds downstream on the vertical plane with a corresponding increase in the horizontal plane. This behaviour is consistent with the turbulence intensity results.
94

Experimental investigation of a model forming fabric

Gilchrist, Seth 11 1900 (has links)
Paper making involves three fabrics: forming, pressing, and drying. The forming fabric is responsible for sheet forming, the initial dewatering of a low concentration pulp suspension into a wet sheet of paper. In the process of forming, topographical and hydrodynamic marks can be transferred from the drainage media (the forming fabric) to the sheet produced. An experimental investigation of a model forming fabric was performed to identify the geometric parameters having the largest influence on hydrodynamic wire mark. The data were also compared with the numerical simulations of Huang. To simplify the problem, justifiable engineering simplifications were made. The second phase (the fibres) was removed and the machine-direction filaments were neglected. This reduced the problem to investigation of flow through a bank of dissimilar cylinders. It was desired to find the most important geometrical parameter to reduce flow non-uniformity in the paper side flow field. Particle image velocimetry, pressure drop and flow visualization tests were conducted to investigate the flow through the array of cylinders. It was found that with a cylinder surface separation of 0.75$\times$ the paper side cylinder diameter the pressure drop tended toward the sum of the rows, and the paper side flow field was nearly identical to the paper side row only flow field, regardless of the backing side cylinder dimensions and configuration. It was seen that when the pressure drop through the bank of cylinders was equal to the sum of the rows' pressure drops the paper side flow field was the same as the paper side row only flow field. As such, pressure drop can act as an indication of when the machine side row will not affect the paper side flow field.
95

Effects of pressure gradient on two-dimensional separated and reattached turbulent flows

Shah, Mohammad Khalid 15 January 2009 (has links)
An experimental program is designed to study the salient features of separated and reattached flows in pressure gradients generated in asymmetric diverging and converging channels. The channels comprised a straight flat floor and a curved roof that was preceded and followed by straight parallel walls. Reference measurements were also made in a parallel-wall channel to facilitate the interpretation of the pressure gradient flows. A transverse square rib located at the start of convergence/divergence was used to create separation inside the channels. In order to simplify the interpretation of the relatively complex separated and reattached flows in the asymmetric converging and diverging channels, measurements were made in the plain converging and diverging channel without the rib on the channel wall. All the measurements were obtained using a high resolution particle image velocimetry technique. The experiments without the ribs were conducted in the diverging channel at Reynolds number based on half channel depth (Reh) of 27050 and 12450 and in the converging channel at Reh = 19280. For each of these three test conditions, a high resolution particle image velocimetry technique (PIV) was used to conduct detailed velocity measurements in the upstream parallel section, within the converging and diverging section, and downstream of the converging and diverging sections. From these measurements, the boundary layer parameters and profiles of the mean velocities, turbulent quantities as well as terms in the transport equations for turbulent kinetic energy and Reynolds stresses were obtained to document the effects of pressure gradient on the flow. In the adverse pressure gradient case, the turbulent quantities were enhanced more significantly in the lower boundary layer than the upper boundary layer. On the other hand, favorable pressure gradient attenuated the turbulence levels and the effect was found to be similar on both the upper and the lower boundary layers. For the separated and reattached flows in the converging, diverging and parallel-wall channels at Reh = 19440, 12420 and 15350, respectively. The Reynolds number based on the approach velocity and rib height was Rek  2700. From these measurements, profiles of the mean velocities, turbulent quantities and the various terms in the transport equations for turbulent kinetic energy and Reynolds stresses were also obtained. The flow dynamics in the upper boundary layer in the separated region and the early stages of flow redevelopment were observed to be insensitive to the pressure gradients. In the lower boundary layer, however, the flow dynamics were entirely dominated by the separated shear layer in the separated region as well as the early region of flow redevelopment. The effects of the separated shear layer diminished in the redevelopment region so that the dynamics of the flow were dictated by the pressure gradients. The proper orthogonal decomposition (POD) was applied to educe the dominant large scale structures in the separated and reattached flows. These dominant scales were used to document structural differences between the canonical upstream flow and the flow field within the separated and redeveloping region. The contributions of these dominant structures to the dynamics of the Reynolds normal and shear stresses are also presented and discussed. It was observed that the POD recovers Reynolds shear stress more efficiently than the turbulent kinetic energy. The reconstruction reveals that large scales contribute more to the Reynolds shear stress than the turbulent kinetic energy. / February 2009
96

Experimental investigation of a model forming fabric

Gilchrist, Seth 11 1900 (has links)
Paper making involves three fabrics: forming, pressing, and drying. The forming fabric is responsible for sheet forming, the initial dewatering of a low concentration pulp suspension into a wet sheet of paper. In the process of forming, topographical and hydrodynamic marks can be transferred from the drainage media (the forming fabric) to the sheet produced. An experimental investigation of a model forming fabric was performed to identify the geometric parameters having the largest influence on hydrodynamic wire mark. The data were also compared with the numerical simulations of Huang. To simplify the problem, justifiable engineering simplifications were made. The second phase (the fibres) was removed and the machine-direction filaments were neglected. This reduced the problem to investigation of flow through a bank of dissimilar cylinders. It was desired to find the most important geometrical parameter to reduce flow non-uniformity in the paper side flow field. Particle image velocimetry, pressure drop and flow visualization tests were conducted to investigate the flow through the array of cylinders. It was found that with a cylinder surface separation of 0.75$\times$ the paper side cylinder diameter the pressure drop tended toward the sum of the rows, and the paper side flow field was nearly identical to the paper side row only flow field, regardless of the backing side cylinder dimensions and configuration. It was seen that when the pressure drop through the bank of cylinders was equal to the sum of the rows' pressure drops the paper side flow field was the same as the paper side row only flow field. As such, pressure drop can act as an indication of when the machine side row will not affect the paper side flow field.
97

The Application of Particle Image Velocimetry in a Small Scale Wind Tunnel

Sperandei, Bryan January 2002 (has links)
This study investigated the applicability of Particle Image Velocimetry (PIV) as a velocity measurement technique for use in wind tunnel flows. To carry out the investigation, a small scale wind tunnel was designed and built to be used specifically with PIV. The tunnel employed a novel contraction geometry which was compared to six other contraction designs using a computational fluid dynamics (CFD) software package. The wind tunnel configuration allowed for full optical access in the test section to allow for PIV measurements in three dimensions. The calibration and characterization of the flow quality within the wind tunnel were performed using PIV. Velocity measurements were obtained in the empty test section to assess the degree of uniformity, alignment, and turbulence at various test speeds. The longitudinal velocities were found to deviate by an average of 1. 8% along any given velocity profile. The flow was found to be well aligned with the test section walls, deviating by no more than &plusmn;0. 20° in most cases. As well, the turbulence levels in the test section were found to be low, with average intensities of 2. 0% and 0. 5% in the longitudinal and transverse directions, respectively. Following the characterization of the flow in the empty wind tunnel, a square cylinder was placed in the test section and PIV measurements were performed at a Reynolds number of 21,400. Mean velocities and turbulence intensities measured around the square cylinder were found to compare well with previous works conducted at similar Reynolds numbers in water flows. As a final validation of the wind tunnel/PIV system, measurements were made of the flow over a 1:18 scale Formula One racecar model at a free stream velocity of 40 <i>m/s</i>. The PIV system collected a large quantity of velocity information around the model, providing insight into the aerodynamic aspects of racecars such as downforce devices and vehicle draughting. The experiments performed in this study led to the conclusion that PIV is indeed a measurement technique with high potential for use in small wind tunnels, providing more spatially resolved velocity data than any other known measurement technique. The advancement of digital camera technology will make PIV a more practical measurement technique for use in larger wind tunnels as well.
98

Vélocimétrie par Image de Particules Holographique pour les Mesures de Turbulence de Paroi

Kuhlmann Abrantes, Juliana 30 March 2012 (has links) (PDF)
La compréhension de la dynamique de la turbulence de paroi a déjà fait l'objet de nombreuses études expérimentales et numériques depuis des décennies. Le principal intérêt pratique de ces études tient au fait que la contrainte de cisaillement pariétale (et donc le frottement) est étroitement liée à la dynamique des structures à la proximité de la paroi. Les techniques expérimentales en mécanique des fluides ont également fait de grands progrès ces dernières années. Ce travail présente le développement d'une méthode expérimentale visant à fournir des mesures 3D-3C de l'écoulement dans la région de très proche paroi, en vue de mesurer la contrainte de cisaillement à la paroi avec une précision améliorée. Dans ce but, une technique originale de Vélocimétrie Holographique par Images de Particules a été mise au point. Les mesures sont effectuées dans un petit volume à proximité de la paroi dans la soufflerie au Laboratoire de Mécanique de Lille. Des mesures détaillées dans un de l'ordre de 1.5mm3 sont rendues possibles grâce l'utilisation d'un objectif de microscope pour l'agrandissement du champ objet. Les particules sont éclairées par le côté, la lumière diffusée a 90o se recombine avec l'onde de référence pour un enregistrement holographique en ligne de type Gabor. Une procédure d'étalonnage a été développée afin de relier l'espace de reconstruction de l'image holographique aux coordonnées dans le volume de mesure. L'analyse des résultats montre que les images de particules sont reconstruites avec une très bonne résolution axiale, ce qui conduit à penser que la configuration est bien adapté à cette type de mesure. Ces résultats montrent également qu'une optimisation et des ajustements sont nécessaires pour d'améliorer les résultats de suivi de particules
99

The Application of Particle Image Velocimetry in a Small Scale Wind Tunnel

Sperandei, Bryan January 2002 (has links)
This study investigated the applicability of Particle Image Velocimetry (PIV) as a velocity measurement technique for use in wind tunnel flows. To carry out the investigation, a small scale wind tunnel was designed and built to be used specifically with PIV. The tunnel employed a novel contraction geometry which was compared to six other contraction designs using a computational fluid dynamics (CFD) software package. The wind tunnel configuration allowed for full optical access in the test section to allow for PIV measurements in three dimensions. The calibration and characterization of the flow quality within the wind tunnel were performed using PIV. Velocity measurements were obtained in the empty test section to assess the degree of uniformity, alignment, and turbulence at various test speeds. The longitudinal velocities were found to deviate by an average of 1. 8% along any given velocity profile. The flow was found to be well aligned with the test section walls, deviating by no more than &plusmn;0. 20° in most cases. As well, the turbulence levels in the test section were found to be low, with average intensities of 2. 0% and 0. 5% in the longitudinal and transverse directions, respectively. Following the characterization of the flow in the empty wind tunnel, a square cylinder was placed in the test section and PIV measurements were performed at a Reynolds number of 21,400. Mean velocities and turbulence intensities measured around the square cylinder were found to compare well with previous works conducted at similar Reynolds numbers in water flows. As a final validation of the wind tunnel/PIV system, measurements were made of the flow over a 1:18 scale Formula One racecar model at a free stream velocity of 40 <i>m/s</i>. The PIV system collected a large quantity of velocity information around the model, providing insight into the aerodynamic aspects of racecars such as downforce devices and vehicle draughting. The experiments performed in this study led to the conclusion that PIV is indeed a measurement technique with high potential for use in small wind tunnels, providing more spatially resolved velocity data than any other known measurement technique. The advancement of digital camera technology will make PIV a more practical measurement technique for use in larger wind tunnels as well.
100

Flow of a non-Newtonian Bingham plastic fluid over a rotating disk

Rashaida, Ali A 19 August 2005 (has links)
Even though fluid mechanics is well developed as a science, there are many physical phenomena that we do not yet fully understand. One of these is the deformation rates and fluid stresses generated in a boundary layer for a non-Newtonian fluid. One such non-Newtonian fluid would be a waxy crude oil flowing in a centrifugal pump. This type of flow can be numerically modeled by a rotating disk system, in combination with an appropriate constitutive equation, such as the relation for a Bingham fluid. A Bingham fluid does not begin to flow until the stress magnitude exceeds the yield stress. However, experimental measurements are also required to serve as a database against which the results of the numerical simulation can be interpreted and validated. The purpose of the present research is to gain a better understanding of the behavior of a Bingham fluid in the laminar boundary layer on a rotating disk. For this project, two different techniques were employed: numerical simulation, and laboratory investigations using Particle Image Velocimetry (PIV) and flow visualization. Both methods were applied to the flow of a Bingham fluid over a rotating disk. In the numerical investigations, the flow was characterized by the dimensionless yield stress Bingham number, By, which is the ratio of the yield and viscous stresses. Using von Kármáns similarity transformation, and introducing the rheological behavior of the fluid into the conservation equations, the corresponding nonlinear two-point boundary value problem was formulated. A solution to the problem under investigation was obtained by numerical integration of the set of Ordinary Differential Equations (ODEs) using a multiple shooting method. The influence of the Bingham number on the flow behavior was identified. It decreases the magnitude of the radial and axial velocity components, and increases the magnitude of the tangential velocity component, which has a pronounced effect on the moment coefficient, CM, and the volume flow rate, Q. In the laboratory investigations, since the waxy crude oils are naturally opaque, an ambitious experimental plan to create a transparent oil that was rheologically similar to the Amna waxy crude oil from Libya was developed. The simulant was used for flow visualization experiments, where a transparent fluid was required. To fulfill the demand of the PIV system for a higher degree of visibility, a second Bingham fluid was created and rheologically investigated. The PIV measurements were carried out for both filtered tap water and the Bingham fluid in the same rotating disk apparatus that was used for the flow visualization experiments. Both the axial and radial velocity components in the (r-z) plane were measured for various rotational speeds. Comparison between the numerical and experimental results for the axial and radial velocity profiles for water was found to be satisfactory. Significant discrepancies were found between numerical results and measured values for the Bingham fluid, especially at low rotational speeds, mostly relating to the formation of a yield surface within the tank. Even though the flow in a pump is in some ways different from that of a disk rotating in a tank, some insight about the behavior of the pump flow can be drawn. One conclusion is that the key difference between the flow of a Bingham fluid in rotating equipment from that of a Newtonian fluid such as water relates to the yield surface introduced by the yield stress of the material, which causes an adverse effect on the performance and efficiency of such equipment.

Page generated in 0.0453 seconds