• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Emergence d'un locus producteur de piRNAs chez la drosophile : mise en place de l'épigénome / Emergence of a piRNA-producing locus in drosophila

Hermant, Catherine 28 January 2015 (has links)
Les éléments transposables d’ADN sont presque ubiquitaires dans le monde vivant et leur mobilité peut être délétère pour le génome. Leur régulation dans les tissus germinaux animaux passe par la voie de silencing des piRNAs (PIWI-interacting RNAs). Les piRNAs sont produits à partir de loci contenant des fragments d’éléments transposables insérés en clusters. Nous étudions l’émergence de ces clusters de piRNAs chez la drosophile.Nous avons activé de novo un cluster de transgènes par héritage maternel de piRNAs homologues. Il s’agit d’un cas de paramutation, ou conversion épigénétique stable et récurrente.Nous avons montré que ce cluster paramuté produit de novo des piRNAs, et étonnement dessiRNAs.J’ai caractérisé de façon fonctionnelle et moléculaire ce phénomène de paramutation par l’utilisation de mutants. J’ai montré que les propriétés de silencing, ainsi que la production depiRNAs et de siRNAs, sont abolies en contexte mutant pour tous les gènes testés de la voie despiRNAs (voies primaire et secondaire). Parallèlement, j’ai étudié un cas de paramutation« partiellement homologue » dans laquelle le cluster reçoit des piRNAs homologues seulement àune partie de sa séquence. J’ai montré qu’il y a production de piRNAs par la totalité du cluster dès la 3e génération.J’ai montré, enfin, que des clusters activés de novo par la chaleur, présentent des propriétés fonctionnelles et moléculaires semblables aux clusters activés par les piRNAsmaternels.Ces travaux apportent des éléments clés pour la compréhension de la mise en place de l’épigénome, tant d’un point de vue mécanistique qu’évolutif. / DNA transposable elements are almost ubiquitous in the living world and their mobility can be deleterious for the genome. Their regulation in germaria is mediated by the piRNAsilencing pathway (PIWI-interacting RNAs). piRNAs are produced by loci formed by clusters of fragments of transposable elements. We are studying the emergence of these piRNA-producing clusters in Drosophila.We have de novo activated a cluster of transgenes via maternal inheritance of homologous piRNAs. This is a case of paramutation i.e. a stable and recurrent epigenetic conversion process.We have shown that this paramutated cluster produces de novo piRNAs and, surprisingly, also siRNAs. I have characterized this paramutation functionally and molecularly, by a mutant approach. I have shown that its silencing properties, as well as piRNA and siRNA production are abolished in mutant contexts for all the genes from the primary and secondary piRNA pathways I have tested. At the same time, I have studied the case of a partially homologous paramutation, in which piRNAs maternally inherited by the cluster are homologous to only a part of its sequence. I have shown that piRNA are produced all along the cluster as early as the 3rdgeneration.Finally, I have shown that a cluster activated de novo by an environmental stress shows the same functional and molecular properties as a cluster paramutated via maternal piRNA inheritance.These studies provide key elements for understanding the emergence of the epigenome from a mechanistic and an evolutionary perspective.
2

Modulation of Alphaviruses by Small RNAs

Morazzani, Elaine M. 19 September 2011 (has links)
Mosquito-borne diseases remain a significant burden on global public health. Maintenance of mosquito-borne viruses in nature requires a biological transmission cycle that involves alternating virus replication in a susceptible vertebrate and mosquito host. Although infection of the vertebrate host is acute and often associated with disease, continual transmission of these viruses in nature depends on the establishment of a persistent, nonpathogenic infection in the mosquito vector. It is well known that invertebrates rely on small RNA pathways as an adaptive antiviral defense. The canonical antiviral response in these organisms involves dicer enzymes that cleave viral double-stranded RNA replicative intermediates (RIs) into small interfering RNAs (siRNAs; ~21-24 nucleotides). One strand of the siRNA duplex guides the targeting and destruction of complementary viral RNAs when loaded and retained in a multi-protein complex called the RNA-induced silencing complex. Here, we show that mosquito vectors mount a redundant double defense against virus infection mediated by two different small RNA pathways. Specifically, we demonstrate that in addition to a canonical antiviral response mediated by siRNAs, virus infection of the mosquito soma also triggers an antiviral immune pathway directed by ping-pong-dependent PIWI-interacting RNAs (piRNAs; ~24-30 nucleotides). The complexity of mosquito antiviral immunity has important implications for understanding how viruses both induce and modulate RNA-silencing responses in mosquito vectors. In mammals, viral RIs induce a range of relatively nonspecific antiviral responses. However, it remains unclear if viral RIs also trigger RNA silencing in mammals. Mosquito-borne viruses represent an ideal model for addressing this question as their transmission cycles involve alternating replication in mammalian and invertebrate hosts. Although we report identifying a subset of virus-derived small RNAs that appear to be products of RNA silencing in two mammalian cell lines infected with the mosquito-borne chikungunya virus (CHIKV), our studies suggest these small RNAs have little biological relevance in combating virus infections. Thus, while the accumulation of virus-derived siRNAs is essential to the survival of mosquitoes infected with CHIKV, they appear to have little functional significance in mammalian antiviral immunity. / Ph. D.
3

Understanding the Production and Stability of Mouse PIWI-Interacting RNAs

Colpan, Cansu 14 January 2020 (has links)
PIWI-interacting RNAs (piRNAs) are small non-coding RNAs unique to animals that guard the germline genome integrity by regulating transposons, viruses, and genes. In mice, piRNAs are highly expressed in testis and guide one of the three PIWI proteins to regulate their targets. The purpose of the 3′ end 2′-O-methyl modification in piRNAs is unknown. It has been speculated that the modification increases stability and facilitates the function of piRNAs, but the direct evidence is lacking. My dissertation addresses two unanswered questions about mouse piRNAs: (1) how are piRNAs produced and how conserved is the piRNA pathway in all animals, and (2) why are mouse piRNAs 2′-O-methylated at their 3′ ends? How piRNAs are generated is still poorly characterized in several model organisms. Studies of these model organisms imply the mechanisms that produce piRNAs differ among animals, tissues and cell types. Here, we demonstrate that a single unified mechanism can explain piRNA production in most animals, from human to the non-bilateral animal hydra. Our analysis elucidated that, in male mouse and female fly germlines, PIWI proteins guided by the initiator piRNA slice long piRNA precursor transcripts, and this PIWI-guided slicing action starts the piRNA biogenesis. PIWI proteins also position the endonuclease to further fragment long piRNA precursor transcripts into a string of tail-to-head, phased trailing piRNAs in a stepwise manner. Our discovery shows the central role of PIWI proteins in the piRNA pathway: both initiating and sustaining the production of piRNAs. For the second question, we discovered that pre-piRNA trimming and piRNA 2′-O-methylation protect piRNAs from separate decay mechanisms. We showed that in the absence of 2′-O-methylation, mouse piRNAs with extensive complementarity to long RNAs are destabilized and destroyed by a mechanism similar to target-directed microRNA degradation (TDMD). On the other hand, untrimmed pre-piRNAs are destroyed by a different mechanism, independent of their extensive complementarity to long RNAs. In the absence of both 2′-O-methylation and trimming, the piRNA pathway collapses which supports the idea of piRNA trimming and methylation collaborating to stabilize piRNAs. Our work suggests that 2′-O-methylation and trimming are important for maintaining the steady-state abundance of piRNAs which is necessary for their function in either transposon silencing or gene regulation.

Page generated in 0.1057 seconds