Spelling suggestions: "subject:"pixel wide"" "subject:"pixel wie""
11 |
Deep Convolutional Neural Networks for Real-Time Single Frame Monocular Depth EstimationSchennings, Jacob January 2017 (has links)
Vision based active safety systems have become more frequently occurring in modern vehicles to estimate depth of the objects ahead and for autonomous driving (AD) and advanced driver-assistance systems (ADAS). In this thesis a lightweight deep convolutional neural network performing real-time depth estimation on single monocular images is implemented and evaluated. Many of the vision based automatic brake systems in modern vehicles only detect pre-trained object types such as pedestrians and vehicles. These systems fail to detect general objects such as road debris and roadside obstacles. In stereo vision systems the problem is resolved by calculating a disparity image from the stereo image pair to extract depth information. The distance to an object can also be determined using radar and LiDAR systems. By using this depth information the system performs necessary actions to avoid collisions with objects that are determined to be too close. However, these systems are also more expensive than a regular mono camera system and are therefore not very common in the average consumer car. By implementing robust depth estimation in mono vision systems the benefits from active safety systems could be utilized by a larger segment of the vehicle fleet. This could drastically reduce human error related traffic accidents and possibly save many lives. The network architecture evaluated in this thesis is more lightweight than other CNN architectures previously used for monocular depth estimation. The proposed architecture is therefore preferable to use on computationally lightweight systems. The network solves a supervised regression problem during the training procedure in order to produce a pixel-wise depth estimation map. The network was trained using a sparse ground truth image with spatially incoherent and discontinuous data and output a dense spatially coherent and continuous depth map prediction. The spatially incoherent ground truth posed a problem of discontinuity that was addressed by a masked loss function with regularization. The network was able to predict a dense depth estimation on the KITTI dataset with close to state-of-the-art performance.
|
12 |
[en] CONVOLUTIONAL NETWORKS APPLIED TO SEMANTIC SEGMENTATION OF SEISMIC IMAGES / [pt] REDES CONVOLUCIONAIS APLICADAS À SEGMENTAÇÃO SEMÂNTICA DE IMAGENS SÍSMICASMATEUS CABRAL TORRES 10 August 2021 (has links)
[pt] A partir de melhorias incrementais em uma conhecida rede neural convolucional (U-Net), diferentes técnicas são avaliadas quanto às suas performances na tarefa de segmentação semântica em imagens sísmicas. Mais especificamente, procura-se a identificação e delineamento de estruturas salinas no subsolo, o que é de grande relevância na indústria de óleo e gás para a exploração de petróleo em camadas pré-sal, por exemplo. Além disso, os desafios apresentados no tratamento destas imagens sísmicas se assemelham em muito aos encontrados em tarefas de áreas médicas como identificação de tumores e segmentação de tecidos, o que torna o estudo da tarefa em questão ainda mais valioso.
Este trabalho pretende sugerir uma metodologia adequada de abordagem à tarefa e produzir redes neurais capazes de segmentar imagens sísmicas com bons resultados dentro das métricas utilizadas. Para alcançar estes objetivos, diferentes estruturas de redes, transferência de aprendizado e técnicas de aumentação de dados são testadas em dois datasets com diferentes níveis de complexidade. / [en] Through incremental improvements in a well-known convolutional neural network (U-Net), different techniques are evaluated regarding their performance on the task of semantic segmentation of seismic images. More specifically, the objective is the better identification and outline of subsurface salt structures, which is a task of great relevance for the oil and gas industry in the exploration of pre-salt layers, for example. Besides that application, the challenges imposed by the treatment of seismic images also resemble those found in medical fields like tumor detection and tissue segmentation, which makes the study of this task even more valuable. This work seeks to suggest a suitable methodology for the task and to yield neural networks that are capable of performing semantic segmentation of seismic images with good results regarding specific metrics. For that purpose, different network structures, transfer learning and data augmentation techniques are applied in two datasets with different levels of complexity.
|
Page generated in 0.0642 seconds