• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 1
  • Tagged with
  • 26
  • 26
  • 26
  • 18
  • 17
  • 15
  • 11
  • 11
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

M STARS IN THE TW HYA ASSOCIATION: STELLAR X-RAYS AND DISK DISSIPATION

Kastner, Joel H., Principe, David A., Punzi, Kristina, Stelzer, Beate, Gorti, Uma, Pascucci, Ilaria, Argiroffi, Costanza 13 June 2016 (has links)
To investigate the potential connection between the intense X-ray emission from young low-mass stars and the lifetimes of their circumstellar planet-forming disks, we have compiled the X-ray luminosities (L-X) of M stars in the similar to 8 Myr old TW Hya Association (TWA) for which X-ray data are presently available. Our investigation includes analysis of archival Chandra data for the TWA binary systems TWA 8, 9, and 13. Although our study suffers from poor statistics for stars later than M3, we find a trend of decreasing L-X/L-bol with decreasing T-eff for TWA M stars, wherein the earliest-type (M0-M2) stars cluster near log(L-X/L-bol) approximate to -3.0 and then log(L-X/L-bol) decreases, and its distribution broadens, for types M4 and later. The fraction of TWA stars that display evidence for residual primordial disk material also sharply increases in this same (mid-M) spectral type regime. This apparent anticorrelation between the relative X-ray luminosities of low-mass TWA stars and the longevities of their circumstellar disks suggests that primordial disks orbiting early-type M stars in the TWA have dispersed rapidly as a consequence of their persistent large X-ray fluxes. Conversely, the disks orbiting the very lowest-mass pre-MS stars and pre-MS brown dwarfs in the Association may have survived because their X-ray luminosities and, hence, disk photoevaporation rates are very low to begin with, and then further decline relatively early in their pre-MS evolution.
12

Constraints from Dust Mass and Mass Accretion Rate Measurements on Angular Momentum Transport in Protoplanetary Disks

Mulders, Gijs D., Pascucci, Ilaria, Manara, Carlo F., Testi, Leonardo, Herczeg, Gregory J., Henning, Thomas, Mohanty, Subhanjoy, Lodato, Giuseppe 20 September 2017 (has links)
In this paper, we investigate the relation between disk mass and mass accretion rate to constrain the mechanism of angular momentum transport in protoplanetary disks. We find a correlation between dust disk mass and mass accretion rate in Chamaeleon I with a slope that is close to linear, similar to the one recently identified in Lupus. We investigate the effect of stellar mass and find that the intrinsic scatter around the best-fit M-dust-M star and M-acc-M star relations is uncorrelated. We simulate synthetic observations of an ensemble of evolving disks using a Monte Carlo approach and find that disks with a constant alpha viscosity can fit the observed relations between dust mass, mass accretion rate, and stellar mass but overpredict the strength of the correlation between disk mass and mass accretion rate when using standard initial conditions. We find two possible solutions. In the first one, the observed scatter in M-dust and M-acc is not primordial, but arises from additional physical processes or uncertainties in estimating the disk gas mass. Most likely grain growth and radial drift affect the observable dust mass, while variability on large timescales affects the mass accretion rates. In the second scenario, the observed scatter is primordial, but disks have not evolved substantially at the age of Lupus and Chamaeleon I owing to a low viscosity or a large initial disk radius. More accurate estimates of the disk mass and gas disk sizes in a large sample of protoplanetary disks, through either direct observations of the gas or spatially resolved multiwavelength observations of the dust with ALMA, are needed to discriminate between both scenarios or to constrain alternative angular momentum transport mechanisms such as MHD disk winds.
13

VLA Observations of the Disk around the Young Brown Dwarf 2MASS J044427+2512

Ricci, L., Rome, H., Pinilla, P., Facchini, S., Birnstiel, T., Testi, L. 25 August 2017 (has links)
We present multi-wavelength radio observations obtained with the VLA of the protoplanetary disk surrounding the young brown dwarf 2MASS J04442713+2512164 (2M0444) in the Taurus star-forming region. 2M0444 is the brightest known brown dwarf disk at millimeter wavelengths, making this an ideal target to probe radio emission from a young brown dwarf. Thermal emission from dust in the disk is detected at 6.8 and 9.1 mm, whereas the 1.36 cm measured flux is dominated by ionized gas emission. We combine these data with previous observations at shorter sub-mm and mm wavelengths to test the predictions of dust evolution models in gas-rich disks after adapting their parameters to the case of 2M0444. These models show that the radial drift mechanism affecting solids in a gaseous environment has to be either completely made inefficient, or significantly slowed down by very strong gas pressure bumps in order to explain the presence of mm/cm-sized grains in the outer regions of the 2M0444 disk. We also discuss the possible mechanisms for the origin of the ionized gas emission detected at 1.36 cm. The inferred radio luminosity for this emission is in line with the relation between radio and bolometric luminosity valid for for more massive and luminous young stellar objects, and extrapolated down to the very low luminosity of the 2M0444 brown dwarf.
14

The Fragmentation Criteria in Local Vertically Stratified Self-gravitating Disk Simulations

Baehr, Hans, Klahr, Hubert, Kratter, Kaitlin M. 09 October 2017 (has links)
Massive circumstellar disks are prone to gravitational instabilities, which trigger the formation of spiral arms that can fragment into bound clumps under the right conditions. Two-dimensional simulations of self-gravitating disks are useful starting points for studying fragmentation because they allow high-resolution simulations of thin disks. However, convergence issues can arise in 2D from various sources. One of these sources is the 2D approximation of self-gravity, which exaggerates the effect of self-gravity on small scales when the potential is not smoothed to account for the assumed vertical extent of the disk. This effect is enhanced by increased resolution, resulting in fragmentation at longer cooling timescales beta. If true, it suggests that the 3D simulations of disk fragmentation may not have the same convergence problem and could be used to examine the nature of fragmentation without smoothing self-gravity on scales similar to the disk scale height. To that end, we have carried out local 3D self-gravitating disk simulations with simple beta cooling with fixed background irradiation to determine if 3D is necessary to properly describe disk fragmentation. Above a resolution of similar to 40 grid cells per scale height, we find that our simulations converge with respect to the cooling timescale. This result converges in agreement with analytic expectations which place a fragmentation boundary at beta(crit) = 3.
15

Exoplanets in Open Clusters and Binaries: New Constraints on Planetary Migration

Quinn, Samuel N 12 August 2016 (has links)
In this dissertation, we present three complementary studies of the processes that drive planetary migration. The first is a radial-velocity survey in search of giant planets in adolescent (<1 >Gyr) open clusters. While several different mechanisms may act to drive giant planets inward, only some mechanisms will excite high eccentricities while doing so. Measuring the eccentricities of young hot Jupiters in these clusters (at a time before the orbits have had a chance to circularize due to tidal friction with their host stars) will allow us to identify which mechanisms are most important. Through this survey, we detect the first 3 hot Jupiters in open clusters (and at least 4 long-period planets), and we measure the occurrence rate of hot Jupiters in clusters to be similar to that of the field (~1%). We determine via analyses of hot Jupiter eccentricities and outer companions in these systems that high eccentricity migration mechanisms (those requiring the presence of a third body) are important for migration. The second project, an adaptive optics imaging survey for stellar companions to known hot Jupiter hosts, aims to determine the role that stellar companions in particular play in giant planet migration. Through a preliminary analysis, we derive a lower limit on the binary frequency of 45% (greater than that of the typical field star), and we find that the presence of a companion is correlated with misalignment of the spin-orbit angle of the planetary system, as would be expected for stellar Kozai-Lidov migration: at least 74% of misaligned systems reside in binaries. We thus conclude that among high eccentricity migration mechanisms, those requiring a stellar companion play a significant role. Finally, we describe simulations of measurements of the planet population expected to be discovered by TESS, and use these to demonstrate that a strong constraint on the obliquity distribution of small planets can be derived using only TESS photometry, Gaia astrometry, and vsin(i) measurements of the host stars. This obliquity distribution will be a key piece of evidence to help detemine the likely formation and migration histories of small planets, and can contribute to the assessment of the potential for Earth-like planets to harbor life.
16

Precise radial velocities of giant stars

Ortiz, Mauricio, Reffert, Sabine, Trifonov, Trifon, Quirrenbach, Andreas, Mitchell, David S., Nowak, Grzegorz, Buenzli, Esther, Zimmerman, Neil, Bonnefoy, Mickaël, Skemer, Andy, Defrère, Denis, Lee, Man Hoi, Fischer, Debra A., Hinz, Philip M. 28 October 2016 (has links)
Context. For over 12 yr, we have carried out a precise radial velocity (RV) survey of a sample of 373 G- and K-giant stars using the Hamilton Echelle Spectrograph at the Lick Observatory. There are, among others, a number of multiple planetary systems in our sample as well as several planetary candidates in stellar binaries. Aims. We aim at detecting and characterizing substellar and stellar companions to the giant star HD 59686 A (HR 2877, HIP 36616). Methods. We obtained high-precision RV measurements of the star HD 59686 A. By fitting a Keplerian model to the periodic changes in the RVs, we can assess the nature of companions in the system. To distinguish between RV variations that are due to non-radial pulsation or stellar spots, we used infrared RVs taken with the CRIRES spectrograph at the Very Large Telescope. Additionally, to characterize the system in more detail, we obtained high-resolution images with LMIRCam at the Large Binocular Telescope. Results. We report the probable discovery of a giant planet with a mass of m(p) sin i = 6.92(-0.24)(+0.18) M-Jup orbiting at a(p) = 1.0860(-0.0007)(+0.0006) aufrom the giant star HD 59686 A. In addition to the planetary signal, we discovered an eccentric (e(B) = 0.729(-0.003)(+0.004)) binary companionwith a mass of m(B) sin i = 0.5296(-0.0008)(+0.0011) M-circle dot orbiting at a close separation from the giant primary with a semi-major axis of a(B) = 13.56(-0.14)(+0.18) au. Conclusions. The existence of the planet HD 59686 Ab in a tight eccentric binary system severely challenges standard giant planet formation theories and requires substantial improvements to such theories in tight binaries. Otherwise, alternative planet formation scenarios such as second-generation planets or dynamical interactions in an early phase of the system's lifetime need to be seriously considered to better understand the origin of this enigmatic planet.
17

RESOLVING THE PLANET-HOSTING INNER REGIONS OF THE LkCa 15 DISK

Thalmann, C., Janson, M., Garufi, A., Boccaletti, A., Quanz, S. P., Sissa, E., Gratton, R., Salter, G., Benisty, M., Bonnefoy, M., Chauvin, G., Daemgen, S., Desidera, S., Dominik, C., Engler, N., Feldt, M., Henning, T., Lagrange, A.-M., Langlois, M., Lannier, J., Coroller, H. Le, Ligi, R., Ménard, F., Mesa, D., Meyer, M. R., Mulders, G. D., Olofsson, J., Pinte, C., Schmid, H. M., Vigan, A., Zurlo, A. 08 September 2016 (has links)
LkCa 15 hosts a pre-transitional disk as well as at least one accreting protoplanet orbiting in its gap. Previous disk observations have focused mainly on the outer disk, which is cleared inward of similar to 50 au. The planet candidates, on the other hand, reside at orbital radii around 15 au, where disk observations have been unreliable until recently. Here, we present new J-band imaging polarimetry of LkCa 15 with SPHERE IRDIS, yielding the most accurate and detailed scattered-light images of the disk to date down to the planet-hosting inner regions. We find what appear to be persistent asymmetric structures in the scattering material at the location of the planet candidates, which could be responsible at least for parts of the signals measured with sparse-aperture masking. These images further allow us to trace the gap edge in scattered light at all position angles and search the inner and outer disks for morphological substructure. The outer disk appears smooth with slight azimuthal variations in polarized surface brightness, which may be due to shadowing from the inner disk or a two-peaked polarized phase function. We find that the near-side gap edge revealed by polarimetry matches the sharp crescent seen in previous ADI imaging very well. Finally, the ratio of polarized disk to stellar flux is more than six times larger in the J-band than in the RI bands.
18

Dynamics of Suspended Dust Grains: Experimental Investigations and Implications for Protoplanetary Discs

Capelo, Holly 16 October 2017 (has links)
No description available.
19

Multiple Disk Gaps and Rings Generated by a Single Super-Earth

Dong, Ruobing, Li, Shengtai, Chiang, Eugene, Li, Hui 13 July 2017 (has links)
We investigate the observational signatures of super-Earths (i.e., planets with. Earth-to-Neptune. mass), which are the most common type of exoplanet discovered to date, in their natal disks of gas and dust. Combining two-fluid global hydrodynamics simulations with a radiative transfer code, we calculate the distributions of gas and of submillimeter-sized dust in a disk perturbed by a super-Earth, synthesizing images in near-infrared scattered light and the millimeter-wave thermal continuum for direct comparison with observations. In low-viscosity gas (alpha (sic) 10(-4)), a super-Earth opens two annular gaps to either side of its orbit by the action of Lindblad torques. This double gap and its associated gas pressure gradients cause dust particles to be dragged by gas into three rings: one ring sandwiched between the two gaps, and two rings located at the gap edges farthest from the planet. Depending on the. system parameters, additional rings may manifest for a single planet. A double gap located at tens of au. from a host star in Taurus can be detected in the dust continuum by the Atacama Large Millimeter Array (ALMA) at an angular resolution of similar to 0".03 after two hours of integration. Ring and gap features persist in a variety of background disk profiles, last for thousands of orbits, and change their relative positions and dimensions depending on the speed and direction of planet migration. Candidate double gaps have been observed by ALMA in systems such as. HL Tau (D5 and D6) and TW Hya (at 37 and 43 au); we submit that each double gap is carved by one super-Earth in nearly inviscid gas.
20

Metallicity determination of M dwarfs

Lindgren, Sara January 2017 (has links)
M dwarfs constitute around 70% of all stars in the local Galaxy. Their multitude together with their long main-sequence lifetimes make them important for studies of global properties of the Galaxy such as the initial mass function or the structure and kinematics of stellar populations. In addition, the exoplanet community is showing an increasing interest for those small, cold stars. However, very few M dwarfs are well characterized, and in the case of exoplanetary systems the stellar parameters have a direct influence on the derived planet properties. Stellar parameters of M dwarfs are difficult to determine because of their low surface temperatures that result in an optical spectrum dominated by molecular lines. Most previous works have therefore relied on empirical calibrations. High-resolution spectrographs operating in the infrared, a wavelength region less affected by molecular lines, have recently opened up a new window for the investigation of M dwarfs. In the two first papers of this thesis we have shown that we can determine the metallicity, and in some cases the effective temperature, using synthetic spectral fitting with improved accuracy. This method is time consuming and therefore not practical or even feasible for studies of large samples of M dwarfs. When comparing our results from the high-resolution studies with available photometric calibrations we find systematic differences. In the third paper we therefore used our sample to determine a new photometric metallicity calibration. Compared to previous calibrations our new photometric calibration shows improved statistical characteristics, and our calibration gives similar results as spectroscopic calibrations. In a comparison with theoretical calculations we find a good agreement of the shapes and slopes of iso-metallicity lines with our empirical relation. Applying the photometric calibration to a sample of M dwarfs with confirmed exoplanets we find a possible giant planet-metallicity correlation for M dwarfs.

Page generated in 0.1287 seconds