Spelling suggestions: "subject:"planet.""
231 |
Aspects of the magnetosphere-stellar wind interaction of close-in extrasolar planetsGriessmeier, Jean-Mathias 16 February 2006 (has links) (PDF)
Since 1995, more than 150 extrasolar planets were detected, of which a considerable fraction orbit their host star at very close distances. Gas giants with orbital distances below 0.1 AU are called “Hot Jupiters”. Current detection techniques are not sensitive enough for the detection of Earth-like planets, but such planets are expected at similar orbital positions. For all these so-called close-in extrasolar planets, the interaction between the stellar wind and the planetary magnetosphere is expected to be very different from the situation known from the solar system. Important differences arising from the close substellar distances include a low stellar wind velocity, a high stellar wind density and strong tidal interaction between the planet and the star. This interaction is shown to lead, for example, to a synchronisation of the planetary rotation with its orbit (“tidal locking”). Taking these points into account, planetary magnetic moments are estimated and sizes of planetary magnetospheres are derived. Two different effects resulting from the magnetospheric interaction are studied in detail. (a) Characteristics of radio emission from the magnetospheres of “Hot Jupiters” are discussed. It is shown that the frequency range and the sensitivity of current radio detectors are not sufficient to detect exoplanetary radio emission. With planned improvements of the existing instrumentation and with the construction of new radio arrays, the detection of exoplanetary radio emission will be possible in the near future. (b) The flux of galactic cosmic rays to the atmospheres of terrestrial exoplanets in close orbits around M stars is studied. Different types of planets are shown to be weakly protected against cosmic rays, which is likely to have implications for planetary habitability. This should be taken into account when selecting targets for the search for biosignatures in the spectra of terrestrial exoplanets.
|
232 |
Doppler tomographic observations of exoplanetary transitsJohnson, Marshall Caleb 24 September 2013 (has links)
Transiting planet candidates around rapidly rotating stars, a number of which have been found by the Kepler mission, are not amenable to follow-up via the usual radial velocity techniques due to their rotationally broadened stellar lines. An alternative method is Doppler tomography. In this method, the distortions of the stellar spectral lines due to subtracted light during the transit are spectroscopically resolved. This allows us to not only validate the transiting planet candidate but also to obtain the spin-orbit misalignment for the system. The spin-orbit misalignment is a powerful statistical tracer of the migration histories of planets. I discuss our project to perform Doppler tomographic observations of Kepler candidates and other transiting planets using the facilities at McDonald Observatory. I present our first transit detection, that of Kepler-13 b, and discuss some other recent results. / text
|
233 |
Is Mars Inhabited?Douglass, A.E. 03 1900 (has links)
No description available.
|
234 |
Development of a Self-Consistent Gas Accretion Model for Simulating Gas Giant Formation in Protoplanetary DisksRussell, John L. 22 December 2011 (has links)
The number of extrasolar planet discoveries has increased dramatically over the last 15 years. Nearly 700 exoplanets have currently been observed through a variety of observation techniques. Most of the currently documented exoplanets differ greatly from the planets in our own Solar System, with various combinations of eccentric orbits, short orbital periods, and masses many times that of Jupiter. More recently, planets belonging to a new class of `distant gas giants' have also been discovered with orbits of 30 to 100 times that of Jupiter. The wide variety of different planet formation outcomes stem from a complex interplay between gravitational interactions, hydrodynamic interactions and competitive accretion among the planets that is not yet fully understood.
Simulations performed using a series of modifications to an existing, widely used hydrodynamic code (FARGO) are presented. The main goal is to develop a more rigorous and robust gas accretion scheme that is valid and consistent for the ranges of exolanetary gas giant masses, eccentricities and semimajor axes that have been observed to better understand the mechanisms involved in their formation. The resulting scheme is a more robust and accurate prescription for gas accretion onto planetary cores in a manner that is mostly resolution independent and valid over a large range of masses (less than an Earth mass to multiple Jupiter masses). The modified scheme accounts for multiple, competing, dynamic accretion mechanisms (including atmospheric effects) and their associated time scales between an arbitrary number of protoplanets. This updated accretion scheme provides a means for exploring the entire formation process of gas giants out of a variety of initial conditions in a self-consistent manner. The modifications made to the code as well as simulation results will be discussed and explored.
|
235 |
Potential Vorticity Evolution in the Co-orbital Region of Embedded ProtoplanetsJ. Koller January 2004 (has links)
Thesis (Ph.D.); Submitted to the Department of Physics and Astronomy, Rice University, Houston, TX (US); 1 Sep 2004. / Published through the Information Bridge: DOE Scientific and Technical Information. "LA-14149-T" J. Koller. US DOE (US) 09/01/2004. Report is also available in paper and microfiche from NTIS.
|
236 |
The chemically peculiar nature of stars with planets : searching for signatures of accretion in stellar photospheres /Laws, Christopher S., January 2004 (has links)
Thesis (Ph. D.)--University of Washington, 2004. / Vita. Includes bibliographical references (p. 136-144).
|
237 |
Přímé a inverzní modelování topografie a gravitačního pole planet / Forward and Inverse Modeling of Planetary Gravity and TopographyPauer, Martin January 2013 (has links)
Title: Forward and Inverse Modeling of Planetary Gravity and Topography Author: Martin Pauer Department/Institute: Department of Geophysics MFF UK Supervisor of the doctoral thesis: Doc. RNDr. Ondřej Čadek, CSc., Department of Geophysics MFF UK Abstract: The aim of this work was to investigate various mechanisms compensating the observed planetary topography - crustal isostasy, elastic support and dynamic support caused by mantle flow. The investigated models were applied to three different planetary problems. Firstly we applied dynamic compensation model to explain today large-scale gravity and topography fields of Venus and investigate its mantle viscosity structure. The results seem to support not only models with constant viscosity structure but also a model with a stiff lithosphere and a gradual increase of viscosity toward a core. In the second paper several crust compensation models were employed to estimate the density of the Martian southern highlands crust. Since the used methods depends differently on crustal density changes, we were able to provide some constraints on the maximum density of the studied region. In the third application, the strength of a possible ocean floor gravity signal of Jupiter's moon Europa was studied. It turned out that if the long wavelength topography reaches height at...
|
238 |
Hydrothermal Habitats: Measurements of Bulk Microbial Elemental Composition, and Models of Hydrothermal Influences on the Evolution of Dwarf PlanetsJanuary 2015 (has links)
abstract: Finding habitable worlds is a key driver of solar system exploration. Many solar
system missions seek environments providing liquid water, energy, and nutrients, the three ingredients necessary to sustain life.
Such environments include hydrothermal systems, spatially-confined systems where hot aqueous fluid circulates through rock by convection. I sought to characterize hydrothermal microbial communities, collected in hot spring sediments and mats at Yellowstone National Park, USA, by measuring their bulk elemental composition. To do so, one must minimize the contribution of non-biological material to the samples analyzed. I demonstrate that this can be achieved using a separation method that takes advantage of the density contrast between cells and sediment and preserves cellular elemental contents. Using this method, I show that in spite of the tremendous physical, chemical, and taxonomic diversity of Yellowstone hot springs, the composition of microorganisms there is surprisingly ordinary. This suggests the existence of a stoichiometric envelope common to all life as we know it. Thus, future planetary investigations could use elemental fingerprints to assess the astrobiological potential of hydrothermal settings beyond Earth.
Indeed, hydrothermal activity may be widespread in the solar system. Most solar system worlds larger than 200 km in radius are dwarf planets, likely composed of an icy, cometary mantle surrounding a rocky, chondritic core. I enhance a dwarf planet evolution code, including the effects of core fracturing and hydrothermal circulation, to demonstrate that dwarf planets likely have undergone extensive water-rock interaction. This supports observations of aqueous products on their surfaces. I simulate the alteration of chondritic rock by pure water or cometary fluid to show that aqueous alteration feeds back on geophysical evolution: it modifies the fluid antifreeze content, affecting its persistence over geological timescales; and the distribution of radionuclides, whose decay is a chief heat source on dwarf planets. Interaction products can be observed if transported to the surface. I simulate numerically how cryovolcanic transport is enabled by primordial and hydrothermal volatile exsolution. Cryovolcanism seems plausible on dwarf planets in light of images recently returned by spacecrafts. Thus, these coupled geophysical-geochemical models provide a comprehensive picture of dwarf planet evolution, processes, and habitability. / Dissertation/Thesis / Doctoral Dissertation Astrophysics 2015
|
239 |
Stellar magnetism and activity : from stellar interiors to orbiting exoplanetsSee, Wyke Chun Victor January 2016 (has links)
The study of magnetic fields on low-mass stars is important due to their ubiquity. They are responsible for phenomena spanning a wide range of spatial and temporal scales. Over the last two decades, the Zeeman-Doppler imaging (ZDI) technique has been used to study the topologies of stellar magnetic fields. A great deal has been learnt about how the magnetic characteristics of cool dwarfs vary as a function of parameters such as mass, rotation or age. In this thesis, I assemble a sample of stars with Zeeman-Doppler maps. I study their poloidal and toroidal components as a function of fundamental parameters and also in relation to activity cycles. I find that the relationship between poloidal and toroidal fields is different for stars above and below the fully convective boundary, in line with previous ZDI studies. I also find that the fields of strongly toroidal stars must be generated axisymmetrically. With regards to activity cycles, I find that so called “inactive branch" stars appear to remain poloidal throughout their activity cycle while so called “active branch" stars appear to be able to generate strong toroidal fields. Magnetic activity can also interact with exoplanets that may be orbiting a star. In this thesis, I consider two such interactions. The first is the compression of planetary magnetospheres by stellar winds. Sufficiently powerful winds can strip a planet of its atmosphere and render it uninhabitable. However magnetospheric shielding can provide some protection. I show that planets around 0.6 M⊙ - 0.8 M⊙ stars are the most likely to be able to protect their atmospheres. The second interaction I consider is exoplanetary radio emission. I present a wind model and show that exoplanetary radio emissions will depend strongly on the structure of the magnetic field structure of the central star.
|
240 |
Suppressed Far-UV Stellar Activity and Low Planetary Mass Loss in the WASP-18 SystemFossati, L., Koskinen, T., France, K., Cubillos, P. E., Haswell, C. A., Lanza, A. F., Pillitteri, I. 13 February 2018 (has links)
WASP-18 hosts a massive, very close-in Jupiter-like planet. Despite its young age (< 1 Gyr), the star presents an anomalously low stellar activity level: the measured log R'(HK) activity parameter lies slightly below the basal level; there is no significant time-variability in the log R'(HK) value; there is no detection of the star in the X-rays. We present results of far-UV observations of WASP-18 obtained with COS on board of Hubble Space Telescope aimed at explaining this anomaly. From the star's spectral energy distribution, we infer the extinction (E(B-V) approximate to 0.01 mag) and then the interstellar medium (ISM) column density for a number of ions, concluding that ISM absorption is not the origin of the anomaly. We measure the flux of the four stellar emission features detected in the COS spectrum (C II, C III, C IV, Si IV). Comparing the C II/C IV flux ratio measured for WASP-18 with that derived from spectra of nearby stars with known age, we see that the far-UV spectrum of WASP-18 resembles that of old (> 5 Gyr), inactive stars, in stark contrast with its young age. We conclude that WASP-18 has an intrinsically low activity level, possibly caused by star-planet tidal interaction, as suggested by previous studies. Re-scaling the solar irradiance reference spectrum to match the flux of the Si IV line, yields an XUV integrated flux at the planet orbit of 10.2 erg s(-1) cm(-2). We employ the rescaled XUV solar fluxes to models of the planetary upper atmosphere, deriving an extremely low thermal mass-loss rate of 10(-20) M-J Gyr(-1). For such high-mass planets, thermal escape is not energy limited, but driven by Jeans escape.
|
Page generated in 0.0344 seconds