• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 3
  • 1
  • Tagged with
  • 38
  • 38
  • 10
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Nuclear regulation of mitochondrial gene expression in Brassica napus

Hamel, Nancy January 1996 (has links)
No description available.
22

Dynamics of the plant mitochondrial proteome : towards the understanding of metabolic networks

Lee, Alex Chun Pong January 2009 (has links)
[Truncated abstract] The mitochondrion is the energy powerhouse that provide energy to many metabolic functions in the form of ATP. Mitochondria in plants are also known to carry out a variety of other important biochemical processes within the cell, including the anaplerotic function of tricarboxylic acid (TCA) cycle, one-carbon metabolism and portions of photorespiration. Dynamics of the mitochondrial proteome in plants underlies fundamental differences in the roles of these organelles under different developmental and environmental conditions. A quantitative comparative proteomic approach was carried out to analyze mitochondria isolated from non-photosynthetic models, cell culture and root, and compared them to mitochondria isolated from photosynthetic shoots. The glycinedependent respiration rate and the protein abundance of the photorespiratory apparatus was found to be higher in shoot than cell culture and root mitochondria. Also, there were major differences in the abundance and/or activities of enzymes in the TCA cycle between the three systems examined. The metabolic pathways that relied on the supply of intermediates from TCA cycle and photorespiration were also altered, namely cysteine, formate and one-carbon metabolism, as well as amino acid metabolism focused on 2-oxoglutarate generation, and branched-chain amino acids degradation. To further provide insight into the extent of mitochondrial heterogeneity in plants, mitochondria isolated from six organ/cell types, leaf, root, cell culture, flower, stem and silique were analyzed. Of the 251 protein spots on a 2D-gel of the mitochondrial soluble/matrix fraction, the abundance of 213 spots were significantly varied between different samples. Identification of these spots revealed a non-redundant set of 79 proteins which were differentially expressed between organ/cell types. ... Importantly, posttranslational modifications played a significant role in the dynamics of the leaf mitochondrial proteome during the diurnal cycle. Overall, these findings indicated that the mitochondrial proteome is dynamic in order to fulfil different functional and physiological requirements in response to organspecific growth and changes in the external environments. These results also indicated that the majority of the changes in the mitochondrial proteome occurred in the matrix and suggested differences in substrate choice/availability in various plant organs and during the diurnal cycle. Further, these analyses demonstrate that, while mitochondrial proteins are regulated transcriptionally by the nucleus, post-transcriptional regulation and/or post-translational modifications play a vital role in modulating the activation state and/or regulation of proteins in key biochemical pathways in plant mitochondria. The integration of proteomics data with respiratory measurements, enzyme assays and transcript datasets will allow the identification of organ-enhanced and/or light/darkresponsive metabolic pathways as well as providing potential targets for reverse genetic approaches for further functional analysis of plant mitochondria.
23

Chromosome number, fertility, and mitochondrial genome of backcross populations derived from Medicago sativa x Medicago dzhawakhetica hybrids

Chaulk, Christine Annie, 1964- January 1989 (has links)
Backcross populations (BC) from Medicago sativa L. x M. dzhawakhetica Bordz. hybrids were analyzed for chromosome number, fertility and morphological characteristics. Previously obtained F1 hybrids were recovered when diploid (2n = 2x = 16) M. sativa was crossed with tetraploid (2n = 4x = 32) M. dzhawakhetica. Resulting F1 hybrids were triploid (2n = 3x = 24), completely male sterile and had low levels of female fertility. Subsequent populations were obtained by successive backcrossing to unrelated (4x) M. sativa clones. The BC1 plants were pentaploid (2n = 5x = 40) and both male and female fertile. BC2 populations had chromosome numbers ranging from 2n = 32 to 48, and most plants (94% were male and female fertile. BC3 populations were tetraploid (2n = 32) or near tetraploid (2n = 33) and were morphologically similar to M. sativa. Preliminary analysis of mitochondrial nucleic acids by agarose gel electrophoresis, indicated biparental inheritance of this organelle in the F1 hybrids; however, further analysis provided inconclusive results.
24

Nuclear-mitochondrial gene interactions and mitochondrial gene expression in Brassica napus

Menassa, Rima. January 1998 (has links)
No description available.
25

Nuclear-mitochondrial gene interactions and mitochondrial gene expression in Brassica napus

Menassa, Rima. January 1998 (has links)
Previous studies have shown that the mitochondrial orf224/ atp6 gene region is correlated with the Polima (pol) cytoplasmic male sterility (CMS) of Brassica napus, and that the effects of nuclear fertility restoration on orf224/ atp6 transcripts co-segregate with the pol restorer gene Rfp in genetic crosses. Results presented in this thesis indicate that the pol CMS restorer gene Rfp acts in an organ-specific manner to promote the processing of primary, dicistronic orf224/atp6 transcripts into new restorer-specific, monocistronic transcripts. The single 1.1 kb atp6 transcript of nap cytoplasm and some orfB transcripts of nap and pol cytoplasm B. napus mitochondria are shown to arise by removal of sequences from the 5' end of a longer precursor. Specific endonucleolytic cleavage of a precursor RNA, followed by non-specific 3' to 5' exonuclease action, may thus represent a common mechanism for tailoring transcripts in plant mitochondria. Northern analysis of a segregating F2 population indicates that the recessive rfp allele at the restorer gene locus, or a very tightly linked gene, acts as a dominant gene designated Mmt (modifier of mitochondrial transcripts). Mmt controls the presence of additional, smaller transcripts of the nad4 and ccl1-like (ccl1-l) genes. These results suggest that Rfp/Mmt is a novel nuclear genetic locus that affects the expression of multiple mitochondrial gene regions, with different alleles or haplotypes exerting specific effects on different mitochondrial genes. One of these genes, ccl1-l, is split in the B. napus mitochondrial genome into two widely separated and independently transcribed parts, contrasting with the situation in other plants where this gene is present as an uninterrupted ORF. Although transcripts of both parts are edited, no "trans-spliced" transcripts spanning both parts of the split ORF, that could be translated into a full sized protein product, were detected. Moreover, an antiserum directed against the product of t
26

Impact of 4-hydroxy-2-nonenal in Arabidopsis mitochondria

Winger, Alison Marie January 2007 (has links)
[Truncated abstract] A range of biotic and abiotic stresses increase levels of reactive oxygen species (ROS) in plants due to perturbations of chloroplast and mitochondrial metabolism and the generation of ROS in defence responses. The polyunsaturated fatty acids of membrane lipids are susceptible to ROS induced peroxidation yielding various aldehydes, alkenals and hydroxyalkenals including the cytotoxic compound 4-hydroxy- 2-nonenal (HNE). HNE has the potential to cause substantial oxidative damage in cells via its reactivity with sulfhydryl groups of cysteine (Cys) and lipoic acid, the imidazole group of histidine (His) and the ?-amino group of lysine (Lys) protein residues. Analysis of the components of the plant respiratory electron transport chain to HNE revealed a particular susceptibility to inhibition of activity of the alternative oxidase (Aox). Incubation with HNE prevented dimerisation of Aox protein, suggesting that one site of modification was the conserved cysteine residue involved in dimerisation and activation of this enzyme (Cys1). However, a naturally occurring isoform of Aox lacking Cys1 and unable to dimerise, LeAox1b from tomato, was equally sensitive to HNE inhibition, showing that other amino acid residues in Aox also interact with HNE and are likely responsible for inactivation of the enzyme. ... The broader impact of HNE on the whole Arabidopsis mitochondrial proteome was examined by use of various 2-dimensional gel separation techniques coupled with use of HNE-adduct antibodies. 32 proteins involved in a number of mitochondrial functions were found to be susceptible to modification by HNE, including components of the electron transport chain, the TCA cycle, as well as proteins involved amino acid metabolism and stress-responses. Implications of modification of these proteins by HNE are discussed. As HNE is produced in vivo during oxidative stress, the profile of mitochondrial targets of HNE was examined from Arabidopsis cell cultures exposed to various oxidative stress inducers. Menadione and hydrogen peroxide induced oxidative stress throughout the cell, while antimycin A initiated a mitochondrial targeted stress. A differential profile of mitochondrial proteins was observed to be modified by HNE in the various treatments. These results also showed that induction of stress within a whole cell can impact lipid peroxidation within the mitochondria. Overall, this work showed the presence and production of HNE in plant cells, and that HNE, both exogenous and endogenous, has the ability to modify a specific subset of mitochondrial proteins. In several cases this HNE modification was shown to have functional or structural consequences.
27

Impact of 4-hydroxy-2-nonenal in Arabidopsis mitochondria /

Winger, Alison Marie. January 2006 (has links)
Thesis (Ph.D.)--University of Western Australia, 2007.
28

Mecanismos de sintese e degradação do radical oxido nitrico pela mitocondria de Arabidopsis thaliana / Mechanisms of synthesis and degradation of radical nitric oxide by mitochonderia of Arabidopsis thaliana

Wulff, Alfredo 14 March 2008 (has links)
Orientador: Ione Salgado / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-11T11:16:49Z (GMT). No. of bitstreams: 1 Wulff_Alfredo_M.pdf: 2480773 bytes, checksum: f1cbea2506b80bbad1e739df2bd5c1c4 (MD5) Previous issue date: 2008 / Resumo: O objetivo deste trabalho foi estudar os mecanismo s de síntese e de degradação do radical óxido nítrico (NO) pela mitocôndria vegetal, com ênfase à influência das NAD(P)H desidrogenases e da oxidase alternativa (AOX) nestes processos. Os experimentos foram realizados com mitocôndrias isoladas de células em cultura da planta modelo Arabidopsis thaliana. Inicialmente estabeleceu-se um protocolo para o isolamento e purificação de mitocôndrias, cuja integridade funcional foi determinada pelo controle respiratório, potencial elétrico de membrana e transporte eletroforético de cálcio. Os processos de síntese e de degradação de NO foram analisados monitorando-se o consumo de oxigênio e as concentrações de NO no meio de reação, com eletrodos específicos. Os resultados mostraram que o nitrito inibiu a respiração das mitocôndrias de A. thaliana em competição com o oxigênio do meio. Esta inibição foi revertida por cPTIO, um seqüestrador de NO. Quando a AOX foi inibida por n-propilgalato, o efeito inibitório do nitrito na respiração mitocondrial foi aumentado, enquanto que, na presença de myxothiazol, que previne a redução da citocromo c oxidase (COX), o nitrito não teve efeito na respiração. Os efeitos observados do nitrito no consumo de oxigênio sugeriram que NO foi sintetizado pelas mitocôndrias de A. thaliana através de uma atividade redutora de nitrito. Entretanto, a síntese de NO a partir de nitrito foi principalmente detectada em anaerobiose. Em altas concentrações de nitrito (1-5 mM), a produção de NO se mostrou praticamente insensível aos inibidores da cadeia respiratória, enquanto que, em concentrações menores de nitrito (100 -200 ?M) a COX, mas não a AOX, contribuiu para a síntese de NO. A exposição das mitocôndrias ao NO ou ao nitrito causou uma inibição transiente e menor no consumo de oxigênio quando NAD(P)H f oi utilizado como substrato respiratório, em relação ao succinato. Estas inibições foram potencializadas por superóxido dismutase, sugerindo um mecanismo de degradação de NO dependente de NAD(P)He de oxigênio pelas mitocôndrias de A. thaliana. O conjunto dos resultados mostra que o NO pode ser produzido pela mitocôndria de A. thaliana através de uma atividade redutora de nitrito e que as NAD(P)H desidrogenases e a AOX, além da COX, podem interferir nesta produção. Em aerobiose, a quantidade de NO produzido pode ser controlada pelas atividades de degradação das NAD(P)H desidrogenases e pela COX. A AOX contribui de maneira oposta, ajudando a manter a concentração de NO. Em anaerobiose a atividade redutora de nitrito é favorecida sendo o NO produzido nestas condições pela COX e também devido ao estado mais reduzido da cadeia respiratória. Ainda, em anaerobiose, os mecanismos de degradação de NO, dependentes de oxigênio, estão inibidos. Em conclusão, os resultados deste trabalho mostram a importância das proteínas alternativas da cadeia respiratória da mitocôndria para a homeostase do NO na planta / Abstract: The objective of this work was to study the mechanisms of synthesis and degradation of NO by plant mitochondria, with emphasis on the influence of the NAD(P)H dehydrogenases and the alternative oxidase (AOX) in these processes. The experiments were carried out with mitochondria isolated from cells in culture of the model plant Arabidopsis thaliana. Initially, a protocol for the isolation and purification of mitochondria was established, and their functional integrity was determined by respiratory control, electric membrane potential and electrophoretic calcium transport. The processes of synthesis and degradation of NO were analyzed by monitoring oxygen consumption and NO concentration in the reaction medium with specific electrodes. The results showed that nitrite inhibited respiration of A. thaliana mitochondria, in competition with oxygen in the medium. This inhibition was reversed by cPTIO, an NO scavenger. When AOX was inhibited by n-propylgalate, the inhibitory effect of nitrite in mitochondrial respiration was increased, whereas in the presence of myxothiazol, which prevents the reduction of cytochrome c oxidase (COX), nitrite had no effect on respirati on. The observed effects of nitrite in the oxygen consumption suggested that NO was synthes ized by A. Thaliana mitochondria through a nitrite reductase activity. Meanwhile, the synthesis of NO from nitrite was mainly detected under anaerobiosis. At high concentrations of nitrite (1-5 mM), the production of NO was virtually insensitive to inhibitors of the respiratory chain, while at lower concentrations of nitrite (100-200 ?M) COX, but not AOX, contributed for the synthesis of NO. The exposure of mitochondria to NO or nitrite caused a transient and lower inhibition in oxygen consumption when NAD(P)H was used as respiratory substrate, compared to succinate. These inhibitions were enhanced by superoxide dismutase, suggesting an NAD(P)H- and oxygendependent mechanism for NO degradation by mitochondria of A. thaliana. The overall results show that NO can be produced by A. thaliana mitochondria through a nitrite reductase activity and that NAD(P)H dehydrogenases and AOX, in addition to COX, can interfere in this production. In aerobiosis the amount of NO produced can be controlled by the degradation activities of NAD(P)H dehydrogenases and COX. The AOX has an opposite effect, keeping the concentration of NO. In anaerobiosis the nitrite reductase activity is favore d and NO is produced in these circumstances by COX, and also due the more reduced state of the respiratory chain. Additionally, in anaerobiosis, the oxygen -dependent mechanisms of NO degradation are inhibited. In conclusion, the results of this study show the importance of the alternative proteins of the mitochondrial respiratory chain for NO homeostasis in the plant / Mestrado / Bioquimica / Mestre em Biologia Funcional e Molecular
29

Alterações no metabolismo energético provocadas pela superexpressão da proteína desacopladora mitocondrial 1 (UCP1) em tabaco induzem biogênese mitocondrial e resposta global a estresses : Alterations on energy metabolism caused by mitochondrial uncoupling protein 1 (UCP1) overexpression in tobacco induce mitochondrial biogenesis and global stress response / Alterations on energy metabolism caused by mitochondrial uncoupling protein 1 (UCP1) overexpression in tobacco induce mitochondrial biogenesis and global stress response

Barreto, Pedro Paulo, 1988- 25 August 2018 (has links)
Orientador: Paulo Arruda / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-25T23:29:52Z (GMT). No. of bitstreams: 1 Barreto_PedroPaulo_D.pdf: 2593736 bytes, checksum: 667c2ed03e1e7e51ac393087c3acc7ae (MD5) Previous issue date: 2014 / Resumo: A proteína desacopladora mitocondrial 1 (UCP1) é uma proteína mitocondrial codificada pelo núcleo capaz de desacoplar o gradiente eletroquímico usado para a síntese de ATP, dissipando a energia na forma de calor. A descoberta de homólogos e ortólogos da UCP1, sugere outros papéis fisiológicos para estas proteínas. As UCPs podem servir como uma válvula de escape, diminuindo a força protonmotiva (PMF) e reduzindo a produção de ROS em condições desfavoráveis. Plantas superexpressando UCPs se desenvolvem melhor quando submetidas a estresses bióticos e abióticos. Estas plantas demonstraram diminuição na produção de ROS, alteração no estado redox celular, além de um aumento no metabolismo energético e na fotossíntese. Neste trabalho nós investigamos os mecanismos moleculares envolvidos no metabolismo energético celular e resposta a estresses em plantas de tabaco superexpressando a UCP1 de A. thaliana. Demonstramos, através de análises moleculares e genômicas, que a superexpressão da UCP1 é capaz de provocar o aumento na respiração desacoplada em mitocôndrias isoladas, diminuir o conteúdo de ATP intracelular, e desencadear um processo de sinalização retrógrada que resulta na indução de genes mitocondriais e genes responsivos a estresses. Esta sinalização retrógrada resultou na indução do processo de biogênese mitocondrial verificado pelo aumento no número e área mitocondrial por célula, além de alterações morfológicas nestas organelas. O processo de biogênese mitocondrial nestas plantas é acompanhado pelo aumento na expressão de um grande número de genes responsivos a estresses, o que resulta no melhor desempenho e reduzida produção de ROS mitocondrial quando submetidas a estresses abióticos. A análise detalhada do transcriptoma de plantas superexpressando UCP1 em comparação com plantas selvagens demonstrou uma forte conexão entre os metabolismos mitocondrial, citoplasmático e cloroplástico para compensar as alterações provocadas pelo aumento na atividade da UCP1. Um grande número de fatores de transcrição ainda não caracterizados foram identificados e podem representar bons alvos para investigações futuras a respeito da regulação da biogênese mitocondrial e do metabolismo energético em plantas. Os resultados contidos nesta tese nos permitem melhor compreender a flexibilidade do metabolismo energético em plantas e identificar possíveis reguladores do processo de biogênese mitocondrial e resposta a estresses em plantas / Abstract: The mitochondrial uncoupling protein 1 (UCP1) is a nuclear-encoded mitochondrial protein capable of uncouple the electrochemical gradient used for ATP synthesis, dissipating energy as heat. The discovery of UCP1 homologues, and its corresponding orthologues suggest diverse physiological functions for these proteins. UCPs may serve as an escape valve, decreasing the proton motive force (PMF) and preventing ROS production under unfavorable conditions. Plants overexpressing UCPs perform better under biotic and abiotic stresses. These plants show diminished ROS production, alteration of cell redox homeostasis, increased energy metabolism and photosynthesis. In this work we investigated the molecular mechanisms underlying cell energy metabolism and stress response in tobacco plants overexpressing an Arabidopsis thaliana UCP1. We demonstrated through molecular, cellular and genomic tools that UCP1 overexpressing plants is capable of increasing uncoupled respiration of isolated mitochondria, decrease intracellular ATP levels, and trigger a retrograde signaling that resulted in a broad induction of mitochondrial and stress response genes. The retrograde signaling resulted in the induction of mitochondrial biogenesis verified by increased mitochondrial number, area and alterations on mitochondrial morphology. The increased mitochondrial biogenesis in these plants accompanied by the broad increase in the expression of stress responsive genes, may be responsible for the diminished ROS production and the better performance of these plants when submitted to several abiotic stresses. We also performed a detailed analysis of the transcriptome expression of the UCP1 overexpressing plants as compared with the wild type plants. We verified that the UCP1 overexpressing plants exhibited a tight connection between mitochondrial, cytoplasm and chloroplast energy metabolism to accommodate the alterations caused by the increased UCP1 activity. A number of uncharacterized transcription factors seem to be good targets for future investigations on the regulation of plant mitochondrial biogenesis and energy metabolism. The results presented in this work allowed a better understanding of the flexibility of energy metabolism in plants, and the use of this mechanism to identify possible regulators of plant mitochondrial biogenesis and stress response / Doutorado / Bioinformatica / Doutor em Genetica e Biologia Molecular
30

Identifying Mitochondrial Genomes in Draft Whole-Genome Shotgun Assemblies of Six Gymnosperm Species / Identifiering av mitokondriers arvsmassa från preliminäraversioner av arvsmassan för sex gymnospermer

Eldfjell, Yrin January 2018 (has links)
Sequencing efforts for gymnosperm genomes typically focus on nuclear and chloroplast DNA, with only three complete mitochondrial genomes published as of 2017. The availability of additional mitochondrial genomes would aid biological and evolutionary understanding of gymnosperms. Identifying mtDNA from existing whole genome sequencing (WGS) data (i.e. contigs) negates the need for additional experimental work but previous classification methods show limitations in sensitivity or accuracy, particularly in difficult cases. In this thesis I present a classification pipeline based on (1) kmer probability scoring and (2) SVM classification applied to the available contigs. Using this pipeline the mitochondrial genomes of six gymnosperm species were obtained: Abies sibirica, Gnetum gnemon, Juniperus communis, Picea abies, Pinus sylvestris and Taxus baccata. Cross-validation experiments showed a satisfying and forsome species excellent degree of accuracy. / Vid sekvensering av gymnospermers arvsmassa har fokus oftast lagts på kärn- och kloroplast-DNA. Bara tre fullständiga mitokondriegenom har publicerats hittills (2017). Fler mitokondriegenom skulle kunna leda till nya kunskaper om gymnospermers biologi och evolution. Då mitokondriernas arvsmassa identifieras från tillgängliga sekvenser för hela organismen (så kallade “contiger”) behövs inget ytterligare laboratoriearbete, men detta förfarande har visat sig leda till bristfällig känslighet och korrekthet, särskilt i svåra fall. I denna avhandling presenterar jag en metod baserad på (1) kmer-sannolikheter och (2) SVM-klassificering applicerad på de tillgängliga contigerna. Med denna metod togs arvsmassan för mitokondrien hos sex gymnospermer fram: Abies sibirica, Gnetum gnemon, Juniperus communis, Picea abies, Pinus sylvestris och Taxus baccata. Korsvalideringsexperiment visade en tillfredställande och för vissa arter utmärkt precision.

Page generated in 0.102 seconds