• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 24
  • 24
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Kvantově-mechanický popis plasmonických nanočástic / Quantum-mechanical description of plasmonic nanoparticles

Nečada, Marek January 2015 (has links)
Coupling of light to charges in a metallic nanoparticle leads to hybrid light-matter states, localised surface plasmon polaritons. They are characterised by very strong field intensities in vicinity of the nanoparticle. This field enhancement can be exploited by coupling the nanoparticles to quantum emitters, e.g. molecules or quantum dots. Many new applications are based on fabrication of arrays of metallic nanoparticles. Significant spatial coherence in such systems is caused by electromagnetic interaction between the nanoparticles. In this work, we study the possibilities of quantum-mechanical description of metallic nanoparticles and the interactions between them. Using the principles of molecular quantum electrodynamics and quantisation of quasistatic normal modes of charge oscillations, we propose a quantum model of interaction between dipole quasistatic oscillation modes and the electromagnetic field. This model is then applied to estimate how presence of another nanoparticle influences the spontaneous radiative decay rate of dipole charge oscillation mode using the third-order perturbation theory. Powered by TCPDF (www.tcpdf.org)
2

Nonlinear imaging with endogenous fluorescence contrast and plasmonic contrast agents

Durr, Nicholas James 21 February 2014 (has links)
Fluorescence from endogenous molecules and exogenous contrast agents can provide morphological, spectral, and lifetime contrast that indicates disease state in epithelial tissues. Recently, nonlinear microscopy has emerged as a potential tool for the early detection, case-finding, and monitoring of epithelial cancers because it permits non-invasive, three-dimensional fluorescence imaging of subcellular features hundreds of microns deep. This dissertation explores the use of nonlinear microscopy for cancer diagnostics on two fronts: (1) we examine the fundamental limitations governing the maximum nonlinear imaging depth in epithelial tissues, and (2) we investigate the use of a new class of nonlinear contrast agent---plasmonic gold nanoparticles---for molecularly specific imaging of cancer cells. We built and optimized a nonlinear microscope for deep tissue imaging, and studied the image contrast as a function of imaging depth in ex-vivo human biopsies and tissue phantoms. With this system we demonstrated imaging down to 370 [mu]m deep in a human biopsy, which is significantly deeper than imaging depths achieved in comparable studies. We found that the large scattering coefficient and homogenous fluorophore distribution typical of epithelial tissues limit the maximum imaging depth to 3-5 mean free scattering lengths deep in conventional nonlinear microscopy. Beyond this imaging depth, the increasing contribution of out-of-focus emission limits the contrast to insufficient levels for diagnostic imaging. We support these observations with time-dependent Monte Carlo simulations. We exploited the intense interaction of gold nanoparticles with light, enhanced by surface plasmon resonance effects, to create extremely bright nonlinear contrast agents. These contrast agents proved to be several orders of magnitude brighter than the brightest organic fluorophores and at least one order of magnitude brighter than quantum dots. We targeted gold nanoparticles to a biomarker for carcinogenesis and demonstrated molecularly specific imaging of cancer cells. We demonstrated that unlike emission from traditional bandgap fluorophores, nonlinear luminescence from gold nanoparticles was weakly dependent on excitation pulse length for short pulse durations. This finding supports the hypothesis that nonlinear excitation in plasmonic nanoparticles involves sequential rather than simultaneous absorption of excitation photons. The remarkable brightness of gold nanoparticles makes them an attractive contrast agent for nonlinear diagnostics. / text
3

DNA Conjugation and DNA Directed Self-Assembly of Quantum Dots for Nanophotonic Applications

January 2014 (has links)
abstract: Colloidal quantum dots (QDs) or semiconductor nanocrystals are often used to describe 2 to 20 nm solution processed nanoparticles of various semiconductor materials that display quantum confinement effects. Compared to traditional fluorescent organic dyes, QDs provide many advantages. For biological applications it is necessary to develop reliable methods to functionalize QDs with hydrophilic biomolecules so that they may maintain their stability and functionality in physiological conditions. DNA, a molecule that encodes genetic information, is arguably the smartest molecule that nature has ever produced and one of the most explored bio-macromolecules. DNA directed self-assembly can potentially organize QDs that are functionalized with DNA with nanometer precision, and the resulting arrangements may facilitate the display of novel optical properties. The goal of this dissertation was to achieve a robust reliable yet simple strategy to link DNA to QDs so that they can be used for DNA directed self assembly by which we can engineer their optical properties. Presented here is a series of studies to achieve this goal. First we demonstrate the aqueous synthesis of colloidal nanocrystal heterostructures consisting of the CdTe core encapsulated by CdS/ZnS or CdSe/ZnS shells using glutathione (GSH), a tripeptide, as the capping ligand. We next employed this shell synthesis strategy to conjugate PS-PO chimeric DNA to QDs at the time of shell synthesis. We synthesized a library of DNA linked QDs emitting from UV to near IR that are very stable in high salt concentrations. These DNA functionalized QDs were further site-specifically organized on DNA origami in desired patterns directed by DNA self-assembly. We further extended our capability to functionalize DNA to real IR emitting CdxPb1-xTe alloyed QDs, and demonstrated their stability by self-assembling them on DNA origami. The photo-physical properties of the QDs were further engineered by attaching a QD and a gold nanoparticle in controlled distances on the same DNA origami, which revealed a much longer range quenching effect than usual Forster Resonance Energy Transfer. We are currently engaged in enhancing photoluminescence intensity of the QDs by bringing them in the plasmonic hot spots generated by cluster of larger plasmonic nanoparticles. / Dissertation/Thesis / Ph.D. Chemistry 2014
4

Synthèse, études optiques et fonctionnalisation de nanoparticules plasmoniques pour des applications biologiques / Synthesis, optical studies and functionalization of plasmonic nanoparticles for biological applications / Synteza, badania optyczne i funkcjonalizacja nanocząstek plazmonicznych dla zastosowań biologicznych

Gordel, Marta 04 December 2015 (has links)
Les recherches décrites dans ce travail appartiennent à une branche de la science relativement jeune et interdisciplinaire, la nanophotonique. Les projets réalisés avaient pour objectif de décrire les phénomènes qui apparaissent lors de l’irradiation par un faisceau lumineux d’un matériau restreint à la dimension de quelques nanomètres à quelques centaines de nanomètres. Les phénomènes qui ont été examinés sont la génération d’absorption, de dispersion et d’émission fluorescente ainsi que le renforcement d’émission fluorescente et le renforcement du champ électromagnétique à une échelle plus petite que la limite de diffraction restreignant l’optique classique. Dans cette thèse, j’ai profité de nouvelles propriétés de la matière générées quand les dimensions sont réduites à l’échelle nanométrique (10-9 m). Elles se distinguent significativement des propriétés classiques qui caractérisent un matériau de plus grandes dimensions. Le changement de propriétés résulte de la limitation spatiale de la structure du nuage d'électrons et de l’augmentation du rapport entre la surface du matériau et son épaisseur. 23 Les particules plasmoniques, largement décrites dans ce travail, en sont un excellent exemple puisque leurs colloïdes possèdent une section efficace d'absorption très importante dans le domaine visible. Un colloïde peut présenter des couleurs différentes en fonction des formes, des dimensions et de la composition des particules qui le constituent, contrairement à une surface métallique qui ne doit son aspect qu'à la réflexion presque totale de la lumière visible et au lustre métallique. À l’échelle nanométrique, nous avons affaire à la résonance plasmonique de surface, un phénomène qui ouvre la porte à la manipulation, à la modification et au renforcement du champ électromagnétique autour de la nanostructure métallique. La possibilité de concentrer la lumière autour d’une nanoparticule au-dessous de la limite de diffraction a trouvé un bon nombre d’applications, dont la microscopie en champ proche, la spectroscopie Raman exaltée de surface (ang. Surface-enhanced Raman spectroscopy, SERS), la théranostique , la production de lecteurs de carte mémoire ou de cellules photovoltaïques. Les recherches décrites dans ce travail ont un caractère interdisciplinaire, elles améliorent nos connaissances dans le domaine de la synthèse de nanostructures plasmoniques, et des méthodes de séparation permettant d'obtenir des colloïdes qui contiennent des nanoparticules presque monodispersives. La méthode de synthèse d'un nouveau métamatériau, produit lors du transfert des nanobâtonnets d’or de l’eau à l’isopropanol, a aussi été présentée dans cette thèse. Par ailleurs, ces recherches ont montré une forte exaltation du champ électromagnétique parmi les nanoparticules. J’ai aussi dénoté une application potentielle de ce matériau en tant que substrat pour la détection de biomolécules. En outre, j’ai préparé des nanocoques d’or largement stables et dont l’épaisseur de dorure est contrôlée. À l’aide de la technique Z-scan, j’ai fait la mesure des propriétés non-linéaires des nanocoques d’or et je les ai comparées avec celles des nanobâtonnets d’or et de colorants organiques en indiquant une application possible. J’ai discuté aussi d'une nouvelle méthode de biofonctionnalisation des nanobâtonnets d’or qui m’a permis de créer un marqueur afin de visualiser des cellules vivantes. Il est aussi possible de convertir l’énergie lumineuse en énergie thermique par le biais des nanostructures plasmoniques, ce qui pourrait trouver d’autres applications intéressantes dans les recherches en théranostique. / This dissertation shows the experimental results, which I strongly believe prove the possibility of application the proposed bioprobe in theranostics treatment. The advantages and disadvantages of the probe were discussed on the basis of imaging of cancer cells, toxicity and fluorescent efficiency. It is important to mention that the process of synthesis of the biomarker was controlled on each step, starting from the selection of appropriate size and shape of the core, through optical characterization, effective way of biofunctionalization and finally application in cell visualization.At first, I presented an improved method of separation of distinct shapes of gold nanoparticles from a heterogeneous mixture. The method of centrifugation in a glucose density gradient was applied in order to get homogenous fractions. The procedure of sample preparation, centrifugation and collection of the separated nanoparticles is described. Moreover, I discussed the synthesis with and without Ag+ ions added to the growth solution.Then, I had a closer look on transferring procedure of the NRs from water into IPA solvent, which induce self-organization of the nanoparticles. Optical characterization as well as recorded ATR spectra gave the foundations to understanding of the assembly process taking place. Additionally the work is enriched with the theoretical calculations indicating that individual self-assembled nanostructures show strong light polarization dependent properties. The electric field localized in the gap between NRs is estimated to be enhanced over 350 fold.In the next part of my thesis I have performed a systematic and quantitative description of the interactions of NRs with light (femtosecond laser pulses, 130 fs, 800 nm) in order to characterize the optical properties and design NRs with specific functionalities. In this work I focused on the investigation of structural changes of the NRs and the parameters influencing the reshaping, like surface modification using sodium sulfide, laser power and the position of the longitudinal surface plasmon resonance band (l-SPR) with respect to the laser wavelength.In the next part of the thesis I have quantified the probability of simultaneous absorption of two photons by plasmonic nanoparticles: gold nanorods and gold nanoshells, and by several dye molecules, by using the open-aperture Z-scan technique available in the laboratory at WUT in Poland. At first, I started from fabrication of stable and highly monodisperse NSs suspensions in water, with a varying degree of gold coverage. Then, the NLO properties of the nanoshells were quantified in terms of the two-photon absorption coefficient (α2), the nonlinear refractive index (n2), and the saturation intensity for one-photon absorption (Isat), which are extensive quantities. Then I calculated the two-photon absorption cross-section (σ2) taken per nanoparticle, which was also interpreted in terms of the merit factor σ2/M (where M is the molar mass of the nanoparticle), the quantity suitable for comparisons with other types of nonlinear absorbers.Finally, in the last chapter I have combined the results and knowledge from all previously described experiments in order to propose a new bioprobe. The probe is based on NR functionalized by DNA strand with attached fluorophore. The distance between gold surface and dye is selected in a such way as to maximize the fluorescent emission. The viability tests show low toxicity for cells and high compatibility. I showed that biofunctionalized NRs can provide fluorescent labeling of cancer cells and enable effective photothermal therapy. This is one of the first demonstrations of coupling a bioimaging application to a cancer therapy application using NRs targeted against a clinical relevant biomarker. I hope that the future studies will extend the in vitro concept demonstrated here to in vivo animal experiments.
5

Exploring some aspects of cancer cell biology with plasmonic nanoparticles

Austin, Lauren Anne 07 January 2016 (has links)
Plasmonic nanoparticles, specifically gold and silver nanoparticles, exhibit unique optical, physical, and chemical properties that are exploited in many biomedical applications. Due to their nanometer size, facile surface functionalization and enhanced optical performance, gold and silver nanoparticles can be used to investigate cellular biology. The work herein highlights a new methodology that has exploited these remarkable properties in order to probe various aspect of cancer cell biology, such as cell cycle progression, drug delivery, and cell death. Cell death mechanisms due to localized gold and silver nanoparticle exposure were also elucidated in this work. Chapter 1 introduces the reader to the synthesis and functionalization of gold and silver nanoparticles as well as reviews their implementation in biodiagnostic and therapeutic applications to provide a foundation for Chapters 3 and 4, where their use in spectroscopic and cytotoxic studies are presented. Chapter 2 provides the reader with detailed explanations of experimental protocols for nanoparticle synthesis and functionalization, in vitro cellular biology experiments, and live-cell Raman spectroscopy experiments that were utilized throughout Chapters 3 and 4. Chapter 3 presents the use of nuclear-targeted gold nanoparticles in conjunction with a Raman microscope modified to contain a live-cell imaging chamber to probe cancer cell cycle progression (Chapter 3.1), examine drug efficacy (Chapter 3.2), monitor drug delivery (Chapter 3.3), and detect apoptotic molecular events in real-time (Chapter 3.4). In Chapter 4, the intracellular effects of gold and silver nanoparticles are explored through live-cell Rayleigh imaging, cell cycle analysis and DNA damage (Chapter 4.1), as well as through the elucidation of cytotoxic cell death mechanisms after nanoparticle exposure (Chapter 4.2) and live cell imaging of silver nanoparticle treated cancer cell communities (Chapter 4.3).
6

Theranostic nanomaterials applied to the cancer diagnostic and therapy and nanotoxicity studies / Nanomateriais Teranósticos Aplicados à Problemática do Câncer e Estudos de Nanotoxicidade.

Marangoni, Valeria Spolon 29 June 2016 (has links)
Multifunctional plasmonic nanoparticles have shown extraordinary potential for near infrared photothermal and triggered-therapeutic release treatments of solid tumors. However, the accumulation rate of the nanoparticles in the target tissue, which depends on their capacity to escape the immune system, and the ability to efficiently and accurately track these particles in vivo are still limited. To address these challenges, we have created two different systems. The first one is a multifunctional nanocarrier in which PEG-coated gold nanorods were grouped into natural cell membrane vesicles from lung cancer cell membranes (A549) and loaded with β-lap (CM-β-lap-PEG-AuNRs). Our goal was to develop specific multifunctional systems for cancer treatment by using the antigens and the unique properties of the cancer cell membrane combined with photothermal properties of AuNRs and anticancer activity of β-lap. The results confirmed the assembly of PEG-AuNRs inside the vesicles and the irradiation with NIR laser led to disruption of the vesicles and release of the PEG-AuNRs and β-Lap. In vitro studies revealed an enhanced and synergic cytotoxicity against A549 cancer cells, which can be attributed to the specific cytotoxicity of β-Lap combined with heat generated by laser irradiation of the AuNRs. No cytotoxicity was observed in absence of laser irradiation. In the second system, MRI-active Au nanomatryoshkas were developed. These are Au core-silica layer-Au shell nanoparticles, where Gd(III) ions are encapsulated within the silica layer between the inner core and outer Au layer of the nanoparticle (Gd-NM). This theranostic nanoparticle retains its strong near infrared optical absorption properties, essential for in vivo photothermal cancer therapy, while simultaneously providing increased T1 contrast in MR imaging by concentrating Gd(III) within the nanoparticle. Measurements of Gd-NM revealed a substantially enhanced T1 relaxivity (r1 ~ 17 mM-1 s-1) even at 4.7 T, surpassing conventional Gd(III)-DOTA chelating agents (r1 ~ 4 mM-1 s-1) currently in clinical use. The observed relaxivities are consistent with Solomon-Bloembergen-Morgan (SBM) theory, describing the longer-range interactions between the Gd(III) and protons outside the nanoparticle. These novel multifunctional systems open the door for the development of more efficient nanoplatforms for diagnosis and treatment of cancer. / Nanopartículas plasmônicas multifuncionais têm revelado elevado potencial para fototermia na região (NIR) do infravermelho e liberação controlada de fármacos para o tratamento de tumores sólidos. No entanto, a taxa de acumulação das nanoparticulas no tecido alvo, que depende da capacidade delas de escapar do sistema imunológico, e a habilidade de rastrear de maneira efetiva essas partículas in vivo ainda são limitadas. Para superar essas barreiras, dois sistemas diferentes foram desenvolvidos. O primeiro corresponde a um nanocarreador multifunctional, onde nanobastões de ouro funcionalizados com PEG foram agrupados dentro de vesículas de membranas de células naturais originarias de células cancerígenas de pulmão (A549) conjugadas com β-Lap (CM-β-lap-PEG-AuNRs). Nosso principal objetivo foi desenvolver um sistema multifuncional especifico para tratamento de câncer utilizando os antígenos e propriedades únicas da membrana das células cancerígenas combinados com as propriedades fototérmicas dos AuNRs e a atividade anticancerígena da β-Lap. Os resultados confirmaram o agrupamento dos PEG-AuNRs dentro das CM e irradiação com o laser no NIR levou ao rompimento das vesículas e liberação dos AuNRs e β-Lap. Estudos in vitro revelaram uma elevada e sinérgica citotoxicidade contra células A549, que pode ser atribuída a combinação da especifica toxicidade da β-Lap com o calor gerado pelos AuNRs por meio da irradiação com laser. Nenhuma citotoxicidade significativa foi observada na ausência de irradiação com laser. No segundo sistema, nanomatryoshkas de Au ativas em MRI foram desenvolvidas. Elas consistem em um núcleo de Au, uma camada intersticial de sílica, onde os íons de Gd(III) são encapsulados, e uma camada externa de Au (Gd-NM). Esta nanopartícula teranóstica mantém as propriedades de elevada absorção óptica no NIR, enquanto simultaneamente fornece um elevado contraste T1 em imagem por ressonância magnética por meio da concentração dos íons de Gd(III) dentro da nanoparticula. Medidas de Gd-NM revelaram uma relaxividade elevada (r1 ~ 17 mM-1 s-1 ) a 4,7 T, superando os convencionais agentes quelantes de Gd(III)-DOTA (r1 ~ 4 mM-1 s-1) utilizados clinicamente. As relaxividades observadas são consistentes com a teoria Solomon-Bloembergen-Morgan (SBM), descrevendo as interações de longo alcance entre Gd(III) e prótons de H fora da partícula. Os novos sistemas multifuncionais desenvolvidos abrem oportunidades para o desenvolvimento de nanoplataformas mais eficientes para o diagnóstico e tratamento de câncer.
7

Smart nanomaterials based on the photoactivated release of silver nanoparticles for bacterial control / Nanomateriais inteligentes baseados na liberação fotoativada de nanopartículas de prata para controle bacteriano

Ballesteros, Camilo Arturo Suarez 28 June 2017 (has links)
Smart nanomaterials can selectively respond to a stimulus and consequently be activated in specific conditions, as a result of their interaction with electromagnetic radiation, biomolecules, pH change, etc. These nanomaterials can be produced through distinct routes and be used in artificial skin, drug delivery, and other biomedical applications. In this thesis, two smart nanosystems were developed, viz., i) nanocapsules formed by aniline (A) and chitosan (CS) (A-CS) containing silver nanoparticles (AgNPs), with an average size of 78 ± 19 nm, and ii) polycaprolactone (PCL) nanofibers, fabricated by the electrospinning technique containing AgNP into their bulk, with a diameter of 417 ± 14 nm. A novel system, based on the incorporation of the as-prepared nanocapsules onto the surface of PCL nanofibers containing AgNps (antibacterial mats), was also developed. The methodology employed avoids the direct contact of silver nanoparticles with the host and optimizes its release to the surrounding environment. The AgNPs release was triggered by exposing the nanocapsules to light at 405 nm. Consequently, the electronic energy vibration resulting from the interaction of the irradiation with the surface plasmon band (SPR) of AgNps, breaking the hydrogen bonds of the nanocapsules and releasing of AgNPs at a time of 150 s. To understand the perturbation of AgNps-Nanocapsules against bacteria, membrane models using Langmuir technique with the phospholipids 1,2-dipalmitoyl-sn-glycero-3-phospho-(1\'-rac-glycerol) (DPPG) and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE) were employed, which are the main components of cell membrane of Escherichia coli (E. coli). The results suggest that DPPG has more influence on the incorporation of the nanoparticles on the cell membrane. The antibacterial properties of the nanofibers/nanomaterials mats towards E. coli and Staphylococcus aureus (S. aureus) were investigated using the Agar diffusion test for 8 samples. The experiments revealed that the samples based on nanofibers/nanocapsules and irradiation presented a radius of inhibition of 2.58 ± 0.28 mm for S. aureus and 1.78 ± 0.49 mm for E. coli. This nanosystem showed to be highly interesting for biomedical applications. / Nanomateriais inteligentes podem responder seletivamente a um estímulo e consequentemente ser ativados em condições específicas, como resultado da sua interação com a radiação eletromagnética, mudança do pH, campo magnético, etc. Esses materiais podem ser produzidos através de distintas rotas e utilizados em aplicações como pele artificial, liberação de fármacos, e outras aplicações biomédicas. Nessa tese, dois nanossistemas inteligentes foram desenvolvidos, a saber: i) nanocápsulas formadas por anilina (A) e quitosana (CS) (A-CS) contendo nanopartículas de prata (AgNps), com um tamanho médio de 78 ± 19 nm, e ii) nanofibras de policaprolactona (PCL), fabricadas pela técnica de eletrofiação contendo AgNps em seu interior, com diâmetro de 417 ± 14 nm. Um terceiro sistema foi desenvolvido, baseado na incorporação das nanocápsulas na superfície das nanofibras de PCL contendo AgNps (manta antibacteriana). A metodologia utilizada evita o contato direto das nanopartículas de prata com o hospedeiro e otimiza sua liberação no meio ambiente. As AgNps liberadas foram acionadas pela exposição das nanocápsulas à um fonte de luz em 405 nm. Consequentemente, a vibração da energia eletrônica resultante da interação da irradiação com a banda plasmônica de superfície (SPR) das AgNps, quebra as ligações de hidrogênio da nanocápsula e libera as AgNps no meio em um tempo de 150 s. Para entender a perturbação das AgNps-nanocapsulas contra as bactérias, modelos de membrana foram usados através da técnica de Langmuir com os fosfolipídios 1,2-dipalmitoil-sn-glicero-3- fosfo-(1\'-rac-glicerol) (DPPG) and 1,2-dimiristoil-sn-glicero-3-fosfoetanolamina (DMPE), que são os principais componentes da membrana celular de Escherichia coli (E. coli). Os resultados sugerem que DPPG tem mais influência na incorporação das nanopartículas na membrana celular. As propriedades antibacterianas das mantas de nanofibras/nanomateriais contra E. coli e Staphylococus aureus (S. aureus) foram investigadas usando o teste de difusão Agar em 8 grupos, o qual revelou que o grupo contendo a nanofibra/nanocapsula e irradiação apresentou um raio de inibição de 2.58 ± 0.28 mm para S. aureus e 1.78 ± 0.49 mm para E. coli. Este nanossistema mostrou ser altamente interessante para aplicações biomédicas.
8

TARGETED ILLUMINATION STRATEGIES FOR HYDROGEN PRODUCTION FROM PURPLE NON-SULFUR BACTERIA

Craven, John D. 01 January 2019 (has links)
The movement towards a more sustainable energy economy may require not only the generation of cleaner fuel sources, but the conversion of waste streams into value-added products. Phototrophic purple non-sulfur bacteria are capable of metabolizing VFAs (volatile fatty acids)and generate hydrogen as a byproduct of nitrogen fixation using energy absorbed from light. VFAs are easily produced from dark anaerobic fermentation of food, agricultural, and municipal wastes, which could then be fed into photobioreactors of purple bacteria for hydrogen production. The process of photofermentation by purple bacteria for hydrogen production remains attractive due to the capability of reaching high substrate conversions under mild operating conditions, but increasing the efficiency of converting light energy into hydrogen remains challenging. Purple bacteria cannot utilize the entire solar spectrum, and the dominant region of absorption lies in the near-infrared region above 800 nm. In this work, the model purple non-sulfur bacteria Rhodopseudomonas palustris was used to study different strategies to increase light utilization and hydrogen production. Near-infrared LED arrays were selected to match the target bacteriochlorophyll absorption range, and were tested to be used as a sole illumination source for photofermentation. Additionally, plasmonic nanoparticles with resonant frequencies matching bacterial absorbance were added in solution to increase light utilization through scattering and near field electric enhancement effects at intensities around 100 W/m2 . Both of these approaches proved to increase cellular growth rate and hydrogen production, which opens the door to utilizing more advanced photonic structures for use in bacterial phototrophic processes.
9

Fine-tuned silica nanohelices as platforms for chiral organization of gold nanoparticles : synthesis, characterization and chiroptical analysis / Nanohélices de silice de morphologie contrôlée utilisées comme plateforme pour l'organisation chirale de nanoparticules d'or : synthèse, caractérisation et analyses chiro-optiques

Cheng, Jiaji 18 December 2015 (has links)
Nanomatériaux de silice peuvent être facilement fabriqués, façonné et fonctionnalisés comme plates-formes pour le greffage des nanoparticules pour des applications biomédicales et optiques. Ici, nous utilisons une méthodologie basée sur un modèle de préparer une collection variée de hélicoïdale nanoparticules d'or (PNB) superstructures ayant impartialité contrôlable et mesures structurelles en utilisant PNB que les blocs de construction, et les nanohelices de silice que le modèle. Le matériaux présentent synthétisé bien définir Agencement chiral de PNB suivant l'hélicité de nanohelices de silice, montrant des signaux plasmoniques de dichorism circulaire (CD). D'autres observations ont prouvé ce plasmon CD vient de l'arrangement chiral de PNB et cet effet est très taille, l'échelle et dépend du pH. Nous nous attendons à ce que cette stratégie d'assemblage va découvrir une meilleure vue sur les métamatériaux et de susciter la vue vers "bottom-up" des approches en nanosciences. / Silica nanomaterials can be easily fabricated, fashioned and functionalized as platforms for grafting of nanoparticles for biomedical and optical applications. Herein, we utilize a template-based methodology to prepare a diverse collection of helical gold nanoparticle (GNPs) superstructures having controllable handedness and structural metrics by using GNPs as the building blocks, and the silica nanohelices as the template. The synthesized materials exhibit well-defined chiral arrangement of GNPs following the helicity of silica nanohelices, showing plasmonic circular dichorism (CD) signals. Further observations proved this plasmon CD comes from the chiral arrangement of GNPs and this effect is highly size, scale and pH dependent. We expect that this assembly strategy will discover a better view towards metamaterials and spark the view towards “bottom-up” approaches in nanoscience.
10

Smart nanomaterials based on the photoactivated release of silver nanoparticles for bacterial control / Nanomateriais inteligentes baseados na liberação fotoativada de nanopartículas de prata para controle bacteriano

Camilo Arturo Suarez Ballesteros 28 June 2017 (has links)
Smart nanomaterials can selectively respond to a stimulus and consequently be activated in specific conditions, as a result of their interaction with electromagnetic radiation, biomolecules, pH change, etc. These nanomaterials can be produced through distinct routes and be used in artificial skin, drug delivery, and other biomedical applications. In this thesis, two smart nanosystems were developed, viz., i) nanocapsules formed by aniline (A) and chitosan (CS) (A-CS) containing silver nanoparticles (AgNPs), with an average size of 78 ± 19 nm, and ii) polycaprolactone (PCL) nanofibers, fabricated by the electrospinning technique containing AgNP into their bulk, with a diameter of 417 ± 14 nm. A novel system, based on the incorporation of the as-prepared nanocapsules onto the surface of PCL nanofibers containing AgNps (antibacterial mats), was also developed. The methodology employed avoids the direct contact of silver nanoparticles with the host and optimizes its release to the surrounding environment. The AgNPs release was triggered by exposing the nanocapsules to light at 405 nm. Consequently, the electronic energy vibration resulting from the interaction of the irradiation with the surface plasmon band (SPR) of AgNps, breaking the hydrogen bonds of the nanocapsules and releasing of AgNPs at a time of 150 s. To understand the perturbation of AgNps-Nanocapsules against bacteria, membrane models using Langmuir technique with the phospholipids 1,2-dipalmitoyl-sn-glycero-3-phospho-(1\'-rac-glycerol) (DPPG) and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE) were employed, which are the main components of cell membrane of Escherichia coli (E. coli). The results suggest that DPPG has more influence on the incorporation of the nanoparticles on the cell membrane. The antibacterial properties of the nanofibers/nanomaterials mats towards E. coli and Staphylococcus aureus (S. aureus) were investigated using the Agar diffusion test for 8 samples. The experiments revealed that the samples based on nanofibers/nanocapsules and irradiation presented a radius of inhibition of 2.58 ± 0.28 mm for S. aureus and 1.78 ± 0.49 mm for E. coli. This nanosystem showed to be highly interesting for biomedical applications. / Nanomateriais inteligentes podem responder seletivamente a um estímulo e consequentemente ser ativados em condições específicas, como resultado da sua interação com a radiação eletromagnética, mudança do pH, campo magnético, etc. Esses materiais podem ser produzidos através de distintas rotas e utilizados em aplicações como pele artificial, liberação de fármacos, e outras aplicações biomédicas. Nessa tese, dois nanossistemas inteligentes foram desenvolvidos, a saber: i) nanocápsulas formadas por anilina (A) e quitosana (CS) (A-CS) contendo nanopartículas de prata (AgNps), com um tamanho médio de 78 ± 19 nm, e ii) nanofibras de policaprolactona (PCL), fabricadas pela técnica de eletrofiação contendo AgNps em seu interior, com diâmetro de 417 ± 14 nm. Um terceiro sistema foi desenvolvido, baseado na incorporação das nanocápsulas na superfície das nanofibras de PCL contendo AgNps (manta antibacteriana). A metodologia utilizada evita o contato direto das nanopartículas de prata com o hospedeiro e otimiza sua liberação no meio ambiente. As AgNps liberadas foram acionadas pela exposição das nanocápsulas à um fonte de luz em 405 nm. Consequentemente, a vibração da energia eletrônica resultante da interação da irradiação com a banda plasmônica de superfície (SPR) das AgNps, quebra as ligações de hidrogênio da nanocápsula e libera as AgNps no meio em um tempo de 150 s. Para entender a perturbação das AgNps-nanocapsulas contra as bactérias, modelos de membrana foram usados através da técnica de Langmuir com os fosfolipídios 1,2-dipalmitoil-sn-glicero-3- fosfo-(1\'-rac-glicerol) (DPPG) and 1,2-dimiristoil-sn-glicero-3-fosfoetanolamina (DMPE), que são os principais componentes da membrana celular de Escherichia coli (E. coli). Os resultados sugerem que DPPG tem mais influência na incorporação das nanopartículas na membrana celular. As propriedades antibacterianas das mantas de nanofibras/nanomateriais contra E. coli e Staphylococus aureus (S. aureus) foram investigadas usando o teste de difusão Agar em 8 grupos, o qual revelou que o grupo contendo a nanofibra/nanocapsula e irradiação apresentou um raio de inibição de 2.58 ± 0.28 mm para S. aureus e 1.78 ± 0.49 mm para E. coli. Este nanossistema mostrou ser altamente interessante para aplicações biomédicas.

Page generated in 0.0941 seconds