• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Plasmonic artificial virus nano-particles for probing virus-host cell interactions

Yu, Xinwei 22 February 2016 (has links)
Targeting of key events in viral infection pathways creates opportunities for virus disease prevention and therapy. Nanoparticles with well-defined surfaces are promising tools for the direct visualization of biological processes and for interrogating virus behavior that is usually determined by the synergistic interplay of multiple factors and involves various transient signaling steps. Smart nanoparticles mimicking enveloped viral particles are thus developed and tested in this work with the aim to de-couple key steps in human immune-deficiency virus HIV-1 trans-infection with an engineerable viral model system. Uni-lamellar liposomes resemble biological lipid bilayer membrane structures with tunable particle size, surface charge, and composition. Pretreatment with ganglioside-GM3-containing liposomes inhibited the binding of HIV-1 by dendritic cells, indicating an essential role for GM3 in virus binding. To equip the liposome based model systems with strong non bleaching optical properties, the membranes were in the next step assembled around noble metal nanoparticle core. Noble metal nanoparticles with a size of 20nm-100nm have extraordinarily large scattering cross-sections and enable prolonged tracking of even individual particles with high temporal and spatial resolutions. The plasmon resonance peak of near-field coupled gold nanoparticles red-shifts within decreasing interparticle separation. The distance dependent optical properties of noble metal nanoparticles were utilized for characterizing clustering levels of breast cancer cell marker protein CD24 and CD44 on immortalized cancer cell lines. These encouraging results supported the choice of gold nanoparticles as core for multi-modal artificial virus nanoparticles. Artificial virus nanoparticles combine the biological versatility of a self-assembled membrane with the unique optical properties of a nanoparticle core. We developed these hybrid materials specifically for the purpose of elucidating key steps of the glycoprotein independent binding and uptake of HIV-1 during trans-infection. Systematic validation experiments revealed that GM3 containing artificial virus nanoparticles (AVNs) recapitulate the initial capture and uptake of viruses by sialoadhesin CD169 presenting cells. The AVNs also reproduced the tendency of the virus to re-distribute into confined cluster spots in cell peripheral areas. Upon contact formation between T cell and DC, the AVNs developed a polarized distribution in which they enriched at the interface between DC and CD4+ T cells. The multimodality of the AVNs was instrumental in determining the detailed location and kinetics of the nanoparticles during the trans-infection process, proving the AVN system to be a unique model system to address key mechanistic questions in the infection pathway of enveloped virus particles.
2

Plasmonic Effect of Metal Nanoparticles Deposited on Wide-Band Gap Metal Oxide Nanowire Substrate

Gilzad Kohan, Mojtaba January 2017 (has links)
The application of nanowires (NWs) in solar cells (SCs) is of great interest due to their new promising aspects established in nanoelectronics. Semiconductors associated with plasmonic metal nanoparticles (NPs) such as Silver (Ag), Gold (Au) and Copper (Cu), show enhanced performance in solid state light absorbing SCs owing to plasmonic characteristic of noble metal NPs. Plasmonic NPs presented a significant role in development of visible light harvesting for many applications such as photocatalytic materials, photodynamic in Surface Enhanced Raman Spectroscopy (SERS) and photovoltaics (PVs). Integration of plasmonic NPs in semiconductor materials have opened the routes to expand new PV systems with high efficiency light absorption. In this project, we introduce the synthesis ZnO and TiO2 NWs used as N-type semiconducting substrates and various methods for isolating plasmonic metal NPs, which are later deposited on the semiconducting substrates. Vertically aligned ZnO and TiO2 NWs arrays were grown on the fluorine-doped tin oxide (FTO) conductive glass substrates via hydrothermal method at low temperature and the plasmonic NPs were synthesized by wet chemistry procedures and finally decorated on the NW films by using electrophoretic deposition.  The impact of metal NPs loaded on the ZnO and TiO2 NWs substrates was studied by means of UV-vis spectroscopy and Photoluminescence (PL) spectroscopy. The absorbance spectra of individual NPs were recorded. Remarkably, the reflectance spectra of produced samples presented an enhancement in light absorption of the substrates after uptake of NPs on the ZnO and TiO2 NWs. The optical properties of the as grown ZnO NWs films decorated with Ag NPs (I) in direct contact with substrate and (II) in presence of an Al2O3 insulating spacer layer have been investigated. Both systems exhibited an enhancement in the UV band-edge emission from the ZnO when excited at 325 nm. In contrast, the broad bend defect emission of the samples did not have a significant change compare to bare ZnO substrates. The observed results suggested that the ZnO and TiO2 NWs decorated with plasmonic nanoparticles can boost the optical properties of MOs NWs substrates and hence effectively enhance the separation of photoexcited electron-hole pairs and photo-conversion applications.

Page generated in 0.0691 seconds