• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 1
  • Tagged with
  • 8
  • 8
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Engineering Application-Specific Plasmonic Nanoparticles: Quantitative Measurements and Precise Characterization

Anderson, Lindsey 16 September 2013 (has links)
Nobel metal nanoparticles that exhibit plasmon resonances in the visible and near infrared have been of great interest in recent years. Strong light-matter interactions on the nanoscale have a range of interesting properties that may be useful in applications in medicine, sensing, solar energy harvesting and information processing. Depending on the application, particle materials and geometries can be optimized for performance. A novel method of quantifying individual nanoparticle scattering cross-sections by comparing experiments with analytical theory for gold nanospheres is proposed and utilized. Results show that elongated particles scatter very brightly for their volumes. This brightness is due to a strong longitudinal plasmon resonance that occurs in the near infrared – where gold has minimal loss. Elongated particles, such as nanorods, are therefore, ideal for applications that rely on particles scattering brightly in small spaces, such as biological imaging. Next, gold nanobelts are discussed and characterized. These novel structures are akin to nanowires, but with a small, rectangular cross-sectional geometry. Gold nanobelts are shown to exhibit a strong transverse resonance that has never been reported previously in nanowires. The transverse resonance is shown to shift linearly with crosssectional aspect ratio. Other interesting products from the nanobelt synthesis, tapered and split nanobelts, are discussed. Gold nanobelts also support longitudinal propagating plasmons, and have the smallest cross-sectional area of any elongated plasmonic structure that has been reported to do so. By analyzing the output tip signal of propagating plasmons for nanobelts of different lengths, the decay length is measured. Finite Difference Time Domain simulations and polarization measurements show the fundamental, azimuthally symmetric mode is very strong for thin structures such as these, but decays much more quickly than a higher-order mode, which begins to dominate at longer lengths. The cross-sectional mode area is given, illustrating the high confinement of plasmons in these structures. A figure of merit that takes into account both confinement and propagation length is calculated to be 1300 for the higher-order mode, the highest reported for nanoscale plasmonic waveguides. The high figure of merit makes gold nanobelts excellent candidates for studying strong coupling between plasmonic structures and objects that exhibit quantum behavior.
2

Hybrid Plasmonic Waveguides and Devices: Theory, Modeling and Experimental Demonstration

Sun, Xiao 17 July 2013 (has links)
This thesis prompt a theoretical analysis of the hybrid plasmonic waveguide (HPWG) and a TE-pass polarizer based on HPWG has been designed, fabricated and characterized. A combination of low propagation loss, high power density, and large confinement is useful for many applications. The analysis results in this thesis show that the HPWG offers a better compromise between loss and confinement as compared to pure plasmonic waveguides. Another interesting property of the HPWG is its polarization diversity. In the HPWG the transverse electric and the transverse magnetic modes reside in different layers. We have designed a very compact hybrid TE-pass polarizer using this property. The polarizer was fabricated and characterized. The device shows low insertion loss for the TE mode with a high extinction ratio at telecommunication wavelength range for a 30 µm long HPWG section. Its performance compares favorably against previously reported silicon based integrated optic TE-pass polarizers.
3

Hybrid Plasmonic Waveguides and Devices: Theory, Modeling and Experimental Demonstration

Sun, Xiao 17 July 2013 (has links)
This thesis prompt a theoretical analysis of the hybrid plasmonic waveguide (HPWG) and a TE-pass polarizer based on HPWG has been designed, fabricated and characterized. A combination of low propagation loss, high power density, and large confinement is useful for many applications. The analysis results in this thesis show that the HPWG offers a better compromise between loss and confinement as compared to pure plasmonic waveguides. Another interesting property of the HPWG is its polarization diversity. In the HPWG the transverse electric and the transverse magnetic modes reside in different layers. We have designed a very compact hybrid TE-pass polarizer using this property. The polarizer was fabricated and characterized. The device shows low insertion loss for the TE mode with a high extinction ratio at telecommunication wavelength range for a 30 µm long HPWG section. Its performance compares favorably against previously reported silicon based integrated optic TE-pass polarizers.
4

Hybrid Plasmon Waveguides: Theory and Applications

Alam, Muhammad 06 December 2012 (has links)
The study and applications of surface plasmon polaritons (SP) – also known as plasmonics – has attracted the interest of a wide range of researchers in various fields such as biology, physics, and engineering. Unfortunately, the large propagation losses of the SP severely limit the usefulness of plasmonics for many practical applications. In this dissertation a new wave guiding mechanism is proposed in order to address the large propagation losses of the plasmonic guides. Possible applications of this guiding scheme are also investigated. The proposed hybrid plasmonic waveguide (HPWG) consists of a metal layer separated from a high index slab by a low index spacer. A detailed analysis is carried out to clarify the wave guiding mechanism and it is established that the mode guided by the HPWG results from the coupling of a SP mode and a dielectric waveguide mode. A two dimensional HPWG is proposed and the effects of various parameters on the HPWG performance are analyzed in detail. This structure offers the possibility of integrating plasmonic devices on a silicon platform. The proposed waveguide supports two different modes: a hybrid TM mode and a conventional TE mode. The hybrid TM mode is concentrated in the low index layer, whereas the conventional TE mode is concentrated in the high index region. This polarization diversity is used to design a TM- and a TE-pass polarizer and a polarization independent coupler on a silicon-on-insulator (SOI) platform. Moreover, the performance of a HPWG bend is investigated and is compared with plasmonic waveguide bends. The proposed devices are very compact and outperform previously reported designs. The application of HPWG for biosensing is also explored. By utilizing the polarization diversity, the HPWG biosensor can overcome some of the limitations of plasmonic sensors. For example, unlike plasmonic sensors, the HPWG biosensor can remove the interfering bulk and surface effects.
5

Hybrid Plasmon Waveguides: Theory and Applications

Alam, Muhammad 06 December 2012 (has links)
The study and applications of surface plasmon polaritons (SP) – also known as plasmonics – has attracted the interest of a wide range of researchers in various fields such as biology, physics, and engineering. Unfortunately, the large propagation losses of the SP severely limit the usefulness of plasmonics for many practical applications. In this dissertation a new wave guiding mechanism is proposed in order to address the large propagation losses of the plasmonic guides. Possible applications of this guiding scheme are also investigated. The proposed hybrid plasmonic waveguide (HPWG) consists of a metal layer separated from a high index slab by a low index spacer. A detailed analysis is carried out to clarify the wave guiding mechanism and it is established that the mode guided by the HPWG results from the coupling of a SP mode and a dielectric waveguide mode. A two dimensional HPWG is proposed and the effects of various parameters on the HPWG performance are analyzed in detail. This structure offers the possibility of integrating plasmonic devices on a silicon platform. The proposed waveguide supports two different modes: a hybrid TM mode and a conventional TE mode. The hybrid TM mode is concentrated in the low index layer, whereas the conventional TE mode is concentrated in the high index region. This polarization diversity is used to design a TM- and a TE-pass polarizer and a polarization independent coupler on a silicon-on-insulator (SOI) platform. Moreover, the performance of a HPWG bend is investigated and is compared with plasmonic waveguide bends. The proposed devices are very compact and outperform previously reported designs. The application of HPWG for biosensing is also explored. By utilizing the polarization diversity, the HPWG biosensor can overcome some of the limitations of plasmonic sensors. For example, unlike plasmonic sensors, the HPWG biosensor can remove the interfering bulk and surface effects.
6

Étude d'un système d'éclairage surfacique à géométrie planaire / Study of a planar lighting device

Wen, Yida 23 September 2015 (has links)
La réalisation d’un système holographique 3D embarqué dans un véhicule nécessite le développement d’une structure d’éclairage surfacique à géométrie planaire pour générer un faisceau cohérent, directionnel et uniforme. Ce type de système a été jusque là réalisé à base de composants optiques classiques comme des lentilles et des miroirs. L’objectif de cette thèse est de proposer une solution plus compacte grâce à l’utilisation des (nano-) technologies d’intégration pour réaliser une émission cohérente, directionnelle et uniforme sur une grande surface à 633 nm en remplaçant les composants optiques volumineux par un circuit intégré photonique.Nous présentons d’abord de manière générale les applications des composants optiques et photoniques dans le domaine automobile, puis la structure planaire intégrée que nous visons pour l’éclairage du système holographique. Nous montrons ensuite l’intérêt du développement de circuits photoniques à base de guides de nitrure de silicium pour le fonctionnement dans le domaine du visible, comme requis pour la présente application. Les travaux réalisés sur les guides d’onde en Si₃N₄ pour la propagation de la lumière à 633 nm sont alors détaillés. Dans un premier temps, nous introduisons les méthodes théoriques pour analyser les modes guidés et montrons les résultats de calcul des indices des modes 1D et 2D pour dimensionner un guide rectangulaire monomode. Enfin, nous détaillons l’étude théorique et de simulation pour définir certains composants intégrés du circuit visé, comme le diviseur 1 × N de faisceau et les guides d’onde courbes. Nous présentons alors les travaux de fabrication des guides d’ondes Si₃N₄ encapsulés dans la silice, précédemment conçus, et qui présentent une dimension autour de 250 nm × 300 nm. Nous montrons les principales étapes de fabrication en salle blanche, comprenant le dépôt des diélectriques à l’aide de la PECVD, la lithographie assistée par faisceau d’électron (EBL) et la gravure ionique réactive (RIE). Les résultats de fabrication sont évalués et analysés afin d’optimiser le procédé de fabrication. Finalement, nous présentons le banc de caractérisation des guides d’onde et les résultats des pertes optiques mesurées. Le dernier chapitre est dédié à l’étude du couplage d’un mode photonique guidé à un mode plasmonique dans un système de guides d’onde, qui consiste en une chaine de nanoparticules métalliques en Au ou en Ag déposée sur le guide d’onde rectangulaire Si₃N₄. L’état de l’art et l’étude théorique sont d’abord présentés, puis nous montrons les résultats de simulation numérique de l’efficacité de couplage en fonction des tailles des nanoparticules et de la longueur d’onde dans ce système de guides d’onde couplés. / An auto-embedded 3D holographic system requires the development of a surface lighting integrateddevice to generate a coherent, directional and uniform lighting beam. Up to now, the realization of this type ofsystem is based on the conventional optical components such as lenses and mirrors. The objective of this thesis isto propose an ultra-compact solution by using the nanotechnologies, in order to realize coherent, directional and uniform light emitting at 633 nm on a large surface in replacing the bulky optical components by a photonic integrated circuit (PIC). In the beginning of the thesis, we present the automotive applications of optics and photonics, and then introduce to the integrated planar structure, which is expected to illuminate the holographic system. We present then our interest of developing silicon nitride waveguides-based PICs, which can be operated in the visible range, as required for the mentioned application. The realized research work on the Si₃N₄ waveguides for the light propagation at 633 nm are then detailed. At first, we introduce the theoretical methods for the analysis of the guided modes and present the calculated indexes of the 1D and 2D modes, which are used to design the single-mode rectangular waveguide. At last, we present exhaustively our theoretical study and simulation work to define some targeted PICs, as the 1 × N beam splitter and the bent waveguides. Then weintroduce the fabrication of the predetermined SiO₂ cladded Si₃N₄ waveguide samples, which have a cross-section size about 250 nm × 300 nm. We present main processes of the fabrication in cleanroom, including the deposition of the dielectric layers by using PECVD, the electron beam lithography (EBL) and the reactive ionicetching (RIE). The fabrication of waveguides has been evaluated and analyzed, in order to optimize the fabrication process. Finally, we present the waveguide’s characterization set-up and the measurement results ofthe optical losses. The last chapter of the thesis is dedicated to the study of the coupling effect from a guidedphotonic mode to a plasmonic mode supported by a guiding structure, which consists of a metallic nanoparticle(Au or Ag) chain deposited on top of the Si₃N₄ rectangular waveguide. The state of the art and the theoretical study are firstly introduced. Then we present the numerical simulation results of the coupling efficiency as a function of nanoparticle’s sizes and operation wavelength in this photonic-plasmonic coupled waveguide system.
7

Application of Effective Medium Modeling to Plasmonic Nanosphere Waveguides

January 2013 (has links)
abstract: A proposed visible spectrum nanoscale imaging method requires material with permittivity values much larger than those available in real world materials to shrink the visible wavelength to attain the desired resolution. It has been proposed that the extraordinarily slow propagation experienced by light guided along plasmon resonant structures is a viable approach to obtaining these short wavelengths. To assess the feasibility of such a system, an effective medium model of a chain of Noble metal plasmonic nanospheres is developed, leading to a straightforward calculation of the waveguiding properties. Evaluation of other models for such structures that have appeared in the literature, including an eigenvalue problem nearest neighbor approximation, a multi- neighbor approximation with retardation, and a method-of-moments method for a finite chain, show conflicting expectations of such a structure. In particular, recent publications suggest the possibility of regions of invalidity for eigenvalue problem solutions that are considered far below the onset of guidance, and for solutions that assume the loss is low enough to justify perturbation approximations. Even the published method-of-moments approach suffers from an unjustified assumption in the original interpretation, leading to overly optimistic estimations of the attenuation of the plasmon guided wave. In this work it is shown that the method of moments approach solution was dominated by the radiation from the source dipole, and not the waveguiding behavior claimed. If this dipolar radiation is removed the remaining fields ought to contain the desired guided wave information. Using a Prony's-method-based algorithm the dispersion properties of the chain of spheres are assessed at two frequencies, and shown to be dramatically different from the optimistic expectations in much of the literature. A reliable alternative to these models is to replace the chain of spheres with an effective medium model, thus mapping the chain problem into the well-known problem of the dielectric rod. The solution of the Green function problem for excitation of the symmetric longitudinal mode (TM01) is performed by numerical integration. Using this method the frequency ranges over which the rod guides and the associated attenuation are clearly seen. The effective medium model readily allows for variation of the sphere size and separation, and can be taken to the limit where instead of a chain of spheres we have a solid Noble metal rod. This latter case turns out to be the optimal for minimizing the attenuation of the guided wave. Future work is proposed to simulate the chain of photonic nanospheres and the nanowire using finite-difference time-domain to verify observed guided behavior in the Green's function method devised in this thesis and to simulate the proposed nanosensing devices. / Dissertation/Thesis / M.S. Electrical Engineering 2013
8

Adressage et contrôle de nanosources optiques par plasmonique intégrée ou fibrée / Addressing and control of optical nanosources by integrated or fibered plasmonics

Barthes, Julien 18 June 2015 (has links)
Les plasmons polaritons de surface, modes supportés par des nanostructures métalliques permettent de confiner la lumière à des échelles sub-longueurs d’onde. En s’affranchissant de la limite de diffraction, ces modes constituent des pistes intéressantes pour l’adressage et le contrôle de nanosources optiques (molécules, boites quantiques...). Par exemple, un nanofil métallique constitue un guide plasmonique unidimensionnel qui permet d’exciter une nanosource ou encore de coupler deux émetteurs avec des applications possibles pour la réalisation de composants nano-optiques intégrés. En revanche, la perte d’énergie dans le métal diminue la portée de ces dispositifs. Une stratégie consiste donc à travailler sur une configuration hybride : plasmonique et fibre optique, pour coupler efficacement l’émission de la nanosource à un mode de fibre. Ceci ouvre la voie à la réalisation d’une nanosource fibrée de manipulation aisée pouvant être utilisée comme source de photon unique pour la cryptographie quantique ou plus simplement comme une sonde de champ proche optique haute résolution.Après une étude des principaux canaux de relaxation d’une molécule fluorescente à proximité d’un guide plasmonique, nous discutons de l’optimisation du couplage entre l’émetteur et le guide plasmonique en jouant sur sa forme et la longueur d’onde d’émission. Ensuite, nous nous intéressons au comportement d’une structure hybride composée d’une fibre optique étirée et métallisée. Enfin, nous montrons que l’optimisation du transfert d’énergie d’une molécule fluorescente en présence de cette structure permet de collecter plus de 50% de l’énergie lumineuse d’un nano-émetteur posé sur un substrat vers une fibre optique par le truchement d’un plasmon. / Surface plasmon polariton (SPP) can confine light on subwavelength dimensions. Since they are not diffraction limited, they are of great interest for addressing and controlling optical nanosources. For example, a metal nanowire defines 1D plasmonic waveguide with a great potential for either addressing or coupling quantum emitters. Therefore, SPP opens great opportunities for integrated optical applications. However, SPP suffer from ohmic losses that jeopardize the applications of plasmonic components. In this context, we study the possibilities provided by an hybrid plasmonic-photonicstructure to couple efficiently an emitter to a fiber mode. Such a structure paves the way for fibered single photon nanosource or high resolution optical probe. In this thesis manuscript, we first study the coupling rate between a fluorescent molecule and a metallic nanowire thanks to Green’s dyad formalism. This leads us to distinguish the different relaxation channels and the enhancement of the energy transferred into the plasmonic guided mode by optimizing the shape of the guide (crystalline nano-wire,slow modes). Then, we investigate the energy propagation in a metal coated taperedoptical fiber. Finally, we achieve an optimal configuration for which more than 50% of the energy emitted by a quantum emitter laid on a substrat is transferred into an optical fiber.

Page generated in 0.0549 seconds