• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude de la fonction du facteur de transcription plastidial, Sigma 3 chez Arabidopsis thaliana

Zghidi, Ouafa 30 June 2008 (has links) (PDF)
Trois ARN polymérases sont responsables de la transcription du génome plastidial. L'une d'entre elle, la PEP (Plastid-Encoded RNA Polymerase), est de type eubactérien et multimérique. Cette enzyme interagit avec des facteurs de transcription de type sigma au niveau des régions promotrices des gènes cibles. Chez Arabidopsis thaliana, six facteurs sigma sont codés par des gènes nucléaires et sont localisés dans les plastes. Nous avons étudié la fonction du facteur sigma 3 (SIG3), à l'aide de mutants d'insertion d'ADN-T d'Arabidopsis. L'analyse du profil d'expression des gènes plastidiaux (transcriptome) par puce à ADN nous a permis de montrer que le complexe PEP/SIG3 transcrit spécifiquement le gène psbN et régule l'expression des gènes atpH, atpA, atpE, atpF et atpB. Le gène psbN se trouve sur le brin opposé de l'opéron psbB, entre les gènes psbT et psbH. L'expression de psbN produit des ARNs antisens de psbT. Des expériences de protection à la RNase A/T1 nous permettent de suggérer que les transcrits sens et antisens de psbT forment in vivo un ARN double brin. Nous avons montré que chez le mutant sig3, le transcrit antisens de psbT est totalement absent alors que la protéine PsbT est plus abondante par rapport au sauvage. Ces résultats suggèrent que la formation d'un ARN double brin psbT sens/antisens diminue l'efficacité de la traduction de la protéine PsbT. Ainsi, le complexe SIG3-PEP, en reconnaissant spécifiquement le promoteur du gène psbN, permet la synthèse de transcrits complémentaires à psbT ce qui constitue un outil de régulation de l'expression de la protéine PsbT. Les gènes atpH et atpB font partie respectivement de l'opéron atpI/atpH/atpF/atpA et l'opéron atpB/atpE. En utilisant la spectinomycine, nous avons montré que l'expression des différents gènes codant les sous unités de l'ATP synthase plastidiale est exclusivement contrôlée par l'ARN polymérase plastidiale, PEP. Nous avons ensuite analysé l'expression de ces opérons dans le mutant sig3. Le gène atpH code la sous unité CF0-III du complexe de l'ATP synthase, 5-12 fois plus abondante que les autres sous unités. Le gène atpB code la sous unité β du complexe CF1 de l'ATP synthase. Nous avons observé par puce à ADN chez la plante sauvage que l'accumulation de l'ARNm atpH est 5 à 12 fois plus importante que les autres transcrits codant les sous unités de l'ATP synthase. Nous avons montré que l'ARNm atpH est produit soit par co-transcription des gènes atpI/atpH soit par transcription à partir d'un promoteur (PatpH-413) reconnu par le complexe SIG3-PEP. Nous suggérons ainsi que le complexe PEP/SIG3 pourrait participer par la régulation transcriptionnelle de l'expression du gène atpH à l'établissement de la stœchiométrie de l'ATP synthase plastidiale chez Arabidopsis thaliana. Par contre, l'opéron atpB/atpE est transcrit à partir de deux promoteurs: PatpB -520 et PatpB -467. Seul le promoteur PatpB -467 est sous le contrôle du facteur SIG3. Ces résultats suggérent donc que le facteur SIG3 régule de manière plus atténuée l'expression de l'opéron atpB/atpE.
2

Caractérisation fonctionnelle d'AtLTP2, une protéine de transfert de lipides impliquée dans le contrôle de l'intégrité de la cuticule chez Arabidopsis thaliana / Functional characterization of AtLTP2, a lipid transfer protein involved in the control of cuticle integrity in Arabidopsis thaliana

Jacq, Adélaïde 25 November 2016 (has links)
La cuticule est une couche hydrophobe déposée à la surface des organes aériens des plantes terrestres. Elle joue de nombreux rôles allant de la résistance face à divers stress biotiques et abiotiques à son implication dans divers processus de développement. Bien que la compréhension de la biosynthèse des composés cuticulaires a considérablement augmenté ces dernières années, les mécanismes de transport de ces lipides cuticulaires à travers la paroi et d'assemblage au sein de la cuticule, sont encore peu caractérisés. Les nsLTPs (non-specific Lipid Transfer Protein), sont codées par une famille multigénique impliquée dans de nombreuses fonctions biologiques. Parmi les rôles proposés pour les nsLTPs, il est supposé depuis longtemps qu'elles pourraient transporter les précurseurs cuticulaires à travers la paroi et ainsi contribuer à la formation de la cuticule. Dans ce travail de thèse, nous nous sommes servis du modèle des hypocotyles étiolés d'A. thaliana afin de caractériser le fonction biologique d'AtLTP2. En effet, AtLTP2 est une protéine de transfert de lipides présente de façon abondante et est la seule représentante des nsLTPs dans le protéome pariétal des hypocotyles étiolés. Nous avons tout d'abord confirmé que l'expression d'AtLTP2 est forte dans les très jeunes stades de développement de la plantule étiolée et est restreinte aux cellules de l'épiderme des organes aériens, sur lesquelles se dépose la cuticule. Conformément aux résultats de protéomique obtenus au préalable, AtLTP2 fusionnée à un marqueur fluorescent est localisée au niveau de la paroi mais également et de façon surprenante au niveau des plastes. Cette remarquable double localisation d'une nsLTP dans la paroi et dans les plastes n'a à ce jour, jamais été décrite. De plus, le mode de transport d'AtLTP2 vers les plastes est particulièrement original puisque la protéine emprunte d'abord la voie de sécrétion avant d'être finalement adressée aux plastes. En analysant l'adressage de différentes versions d'AtLTP2 tronquée, nous avons pu montrer que c'est certainement sa conformation tertiaire qui est cruciale pour sa localisation plastidiale. Par des approches de génétique inverse, nous avons pu montrer que les mutants atltp2 présentaient une augmentation importante de la perméabilité de sa cuticule fortement corrélée à une ultrastructure de l'interface cuticule-paroi très perturbée alors qu'aucun changement dans la composition biochimique de la cuticule n'a été détecté. Ces résultats nous ont permis de proposer un nouveau rôle structural pour AtLTP2, elle interviendrait pour maintenir l'adhésion des deux couches que sont la cuticule hydrophobe et la paroi hydrophile. Ainsi, en maintenant l'intégrité de l'interface entre la cuticule et la paroi, AtLTP2 participerait au maintien de la fonction de barrière cuticulaire limitant les pertes d'eau. De façon intéressante, la double localisation d'AtLTP2 dans la paroi et les plastes nous laisse supposer que d'autres fonctions pourraient être assignées à AtLTP2. L'identification des mécanismes moléculaires mis en jeu dans le maintien de l'homéostasie cuticule-paroi et dans la double localisation d'AtLTP2 constituera un challenge pour de futures recherches visant à toujours mieux identifier les acteurs de la formation de cette barrière protectrice, la cuticule. / The cuticle is a hydrophobic layer that covers the surface of the aerial organs of land plants. The cuticle plays numerous roles in plants from resistance against biotic and abiotic stresses to several developmental processes. Although the understanding of the biosynthesis of cuticle has considerably increased last years, the mechanisms underlying the transport of cuticular lipids through the cell wall and their assembly within the cuticle have been poorly characterized. nsLTPs (non-specific Lipid Transfer Proteins) are encoded by a multigenic family in A. thaliana and are involved in several biological processes. Among the different roles proposed for nsLTPs, it has long been suggested that they could transport cuticular precursor across the cell wall and then could contribute to the cuticle formation, despite the absence of formal evidence for individual members. Here we took advantage of the A. thaliana etiolated hypocotyls model to characterize the biological function of AtLTP2. Indeed, AtLTP2 was found to be abundant and the unique nsLTP member in the cell wall proteome of etiolated hypocotyls. We have first confirmed the high level of AtLTP2 expression during the young developmental stages of etiolated seedlings that was restricted to the epidermal cells of aerial organs, that are covered by the cuticle. In agreement with the cell wall localization determined by previous proteomic studies, we localized AtLTP2 fused to a fluorescent marker to the cell wall, but also and surprisingly to the plastids. This remarkable dual localization in the cell wall and plastids was never described before for a nsLTP. Furthermore, the mechanism of AtLTP2 transport to the plastids was particularly original because AtLTP2 can first undergo import into the ER/ secretory pathway and then sorting to the cell wall and the plastids. By studying the sub-cellular localization of truncated version of AtLTP2, we have shown that its tertiary conformation was crucial for the plastidial localization. By using reverse genetic approaches, we have shown that atltp2 mutants displayed a high increase in cuticle permeability strongly correlated with a deep modification of the ultra-structure at the cuticle-cell wall interface, while no changes in biochemical composition of the cuticle were detected. These results prompt us to suggest a novel structural role for AtLTP2. AtLTP2 could be involved in maintaining the accurate sealing between the hydrophobic cuticle and the hydrophilic underlying cell wall. Then, by preserving the integrity of the cuticle-cell wall interface, AtLTP2 could act on the barrier function of the cuticle limiting water loss. Interestingly, the dual localization to the cell wall and plastids suggested that other functions could be assigned to AtLTP2. The elucidation of the molecular mechanisms by which AtLTP2 establish cell wall-cuticle homeostasis and the exact function of the dual targeting will be challenging tasks in the future to better identify the main actors of the formation of the cuticle.
3

ETUDE DES REMANIEMENTS LIPIDIQUES DES CELLULES VEGETALES EN CARENCE DE PHOSPHATE

Jouhet, Juliette 25 November 2005 (has links) (PDF)
Dans de nombreux sols, le phosphate est un élément limitant pour la croissance des plantes. Au niveau cellulaire, la carence de phosphate induit une diminution de la teneur en phospholipides, permettant la mobilisation du phosphate contenu dans ces molécules. Cette baisse est compensée par une augmentation de la teneur en glycolipides plastidiaux non phosphorés tels que le digalactosyldiacylglycérol (DGDG). Nous avons montré qu'au cours de la carence de phosphate, une partie des phospholipides est reconvertie en phosphatidylcholine (PC), produisant, au temps court de carence, une accumulation transitoire de PC dans les cellules. La PC est ensuite hydrolysée en diacylglycérol (DAG) qui s'accumule en carence de phosphate et nourrit la synthèse du DGDG. Nos résultats suggèrent un transfert direct du DAG à partir des membranes non plastidiales vers l'enveloppe des plastes, lieu de synthèse du DGDG. Le DGDG est ensuite exporté dans des membranes extraplastidiales. Nous avons mis en évidence la présence de DGDG dans les mitochondries et son transfert des plastes vers les mitochondries à partir de contacts entre des domaines spécialisés de l'enveloppe des plastes et des mitochondries. Enfin, pour identifier des protéines impliquées dans ces mécanismes de remaniement des lipides, nous avons collaboré à une analyse transcriptomique du génome d'Arabidopsis thaliana en carence de phosphate. Nous avons notamment sélectionné une phospholipase D, PLDzéta2, qui semble impliquée dans le contrôle de la teneur intracellulaire en phosphate inorganique et dans l'hydrolyse de la PC pour l'approvisionnement en DAG de la synthèse des galactolipides.

Page generated in 0.0568 seconds