• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 429
  • 151
  • 112
  • 43
  • 15
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • 8
  • 7
  • 7
  • 4
  • Tagged with
  • 980
  • 354
  • 190
  • 146
  • 132
  • 117
  • 114
  • 106
  • 87
  • 85
  • 73
  • 66
  • 66
  • 64
  • 62
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

The strength of fixation of porous metal implants by the ingrowth of bone /

Bobyn, John Dennis January 1977 (has links)
No description available.
352

An investigation of energy flow through coupled plate structures

Skeen, Michael Berling, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2008 (has links)
This PhD thesis presents research aims to improving the dynamic modelling of coupled plate structures across a wide frequency range by using analytical, statistical and experimental methods. The analytical waveguide method is used to model the flexural displacement of coupled plate structures which are simply supported along two parallel edges. A method of quickly predicting the average energy level in a plate from details of the waveguide model is described, and used for comparison with SEA models. The Poynting and Impedance methods of predicting the energy flow in coupled plate structures are investigated. Transmission coefficients for coupled plate structures are evaluated using the analytical waveguide method for both semi-infinite and finite coupled plate structures. Finite transmission coefficients have traditionally been more difficult to evaluate due to the presence of a reverberant field, but in this work a novel method of separating the reverberant field using a scattering matrix method is presented. The transmission coefficients for semi-infinite and finite structures are then compared for L-shaped plates. A modal transmission coefficient is also defined and for the cases considered, and is used to develop an alternative method of deriving the transmission coefficient in a finite structure. Frequency averaged transmission coefficients are also considered, and the transmission coefficients derived for finite and semi-infinite structures are found to be very similar after frequency averaging. Statistical Energy Analysis models of coupled plates are evaluated using transmission coefficients derived from waveguide models. The results of the SEA models are compared to those predicted by the analytical waveguide method. A modal transmission coefficient based SEA model is also investigated. In an attempt to validate the numerical work presented in this thesis, experiments have been conducted. Using a wave extraction technique, both the wave amplitudes and plate properties have been evaluated from experimental data, and are subsequently used to experimentally measure the transmission coefficient for two plates coupled at different angles.
353

On the relation between fluid flow over bluff bodies and accompanying acoustic radiation.

Blazewicz, Antoni Michal January 2008 (has links)
The relationship between distinctive characteristic fluid-flow regimes and the sound radiation generated by them has been investigated, over a range of Reynolds numbers, for various single plates and two-plate arrays in nominally two-dimensional flows. In preliminary experiments, the characteristics of flow over single plates with rectangular cross-section and faired leading edges and over tandem arrays of an upstream plate with rectangular cross-section and faired leading edges and a downstream plate of rectangular cross-section were investigated, together with the sound radiation produced. However, the main investigation has been concentrated on single plates of rectangular cross-section with various chord-to-thickness ratios C and on arrays of two plates of rectangular cross-section in tandem having various chord-to-thickness ratios C₁ and C₂ and a range of gaps (with gap-to-thickness ratios G) between them. The range of Reynolds number based on plate thickness t and free-stream velocity U, Re[subscript]t = Ut/ν (where ν is the kinematic viscosity of fluid) covered in the measurements is 3.2 x 10[superscript]3 ≤ Re[subscript]t 53 x 10[superscript]3. Spectra of velocity fluctuations in the flow and radiated sound have been measured and their characteristic frequencies related. An attempt has been made to measure force fluctuations on surfaces of the plates in order to relate them to flow characteristics and radiated sound power. Mean and fluctuating pressures associated with the force fluctuations on the plates have also been obtained. The lengths of separation bubbles on long rectangular plates have also been determined. In most cases, the measurements have been complemented by flow-visualisation in a water tunnel to provide additional detailed insight into the flow patterns. Three flow regimes have been identified for single plates of rectangular cross-section. In the first regime (1 ≤ C ≤ 3.13), shear layers separated from the leading edges form a vortex street downstream of the plate without reattachment to it. Associated force fluctuations on the plate are the main source of acoustic radiation. In the second regime (3.05 ≤ C ≤ 9.65), the separated shear layers reattach intermittently to the streamwise plate surfaces. Vortex formation in the shear layer is the dominant cause of sound radiation but the effect becomes weaker as C increases. In the third regime (6.52 ≤ C ≤ 68), the separated shear layers form closed leading-edge separation bubbles. Weak vortex shedding, with only a small contribution to the sound radiation, occurs only at the trailing edges of the plate. Bistable behaviour of the flow over a plate, with random switching between the regimes, occurs for C ≈ 3 and 6.52 ≤ C ≤ 9.65. A proposed classification of possible flow regimes for the flow around two plates of rectangular cross-section in tandem has been confirmed experimentally. For small G, the flow in the gap between the plates is isolated from the external flow. When the gap G between the plates is increased to or beyond a critical value (between 2 and 3.5), the shear layers separated from the upstream plate form a von Karman vortex street in the gap before interacting with the downstream plate. Flow and acoustic measurements indicate that this transition is associated with dramatic changes in the flow character. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1320474 / Thesis (Ph.D.) -- University of Adelaide, School of Mechanical Engineering, 2008
354

Active control of vibration in stiffened structures

Young, Andrew J January 1995 (has links)
Active control of vibration in structures has been investigated by an increasing number of researchers in recent years. There has been a great deal of theoretical work and some experiment examining the use of point forces for vibration control, and more recently, the use of thin piezoelectric crystals laminated to the surfaces of structures. However, control by point forces is impractical, requiring large reaction masses, and the forces generated by laminated piezoelectric crystals are not sufficient to control vibration in large and heavy structures. The control of flexural vibrations in stiffened structures using piezoceramic stack actuators placed between stiffener flanges and the structure is examined theoretically and experimentally in this thesis. Used in this way, piezoceramic actuators are capable of developing much higher forces than laminated piezoelectric crystals, and no reaction mass is required. This thesis aims to show the feasibility of active vibration control using piezoceramic actuators and angle stiffeners in a variety of fundamental structures. The work is divided into three parts. In the first, the simple case of a single actuator used to control vibration in a beam is examined. In the second, vibration in stiffened plates is controlled using multiple actuators, and in the third, the control of vibration in a ring-stiffened cylinder is investigated. In each section, the classical equations of motion are used to develop theoretical models describing the vibration of the structures with and without active vibration control. The effects of the angle stiffener(s) are included in the analysis. The models are used to establish the quantitative effects of variation in frequency, the location of control source(s) and the location of the error sensor(s) on the achievable attenuation and the control forces required for optimal control. Comparison is also made between the results for the cases with multiple control sources driven by the same signal and with multiple independently driven control sources. Both finite and semi-finite structures are examined to enable comparison between the results for travelling waves and standing waves in each of the three structure types. This thesis attempts to provide physical explanations for all the observed variations in achievable attenuation and control force(s) with varied frequency, control source location and error sensor location. The analysis of the simpler cases aids in interpreting the results for the more complicated cases. Experimental results are given to demonstrate the accuracy of the theoretical models in each section. Trials are performed on a stiffened beam with a single control source and a single error sensor, a stiffened plate with three control sources and a line of error sensors and a ring-stiffened cylinder with six control sources and a ring of error sensors. The experimental results are compared with theory for each structure for the two cases with and without active vibration control. / Thesis (Ph.D.)--Mechanical Engineering, 1995.
355

Investigation of a HA/PDLGA/Carbon Foam Material System for Orthopedic Fixation Plates Based on Time-Dependent Properties

Rodriguez, Douglas E. 14 January 2010 (has links)
While there is continuing interest in bioresorbable materials for orthopedic fixation devices, the major challenge in utilizing these materials in load-bearing applications is creating materials sufficiently stiff and strong to sustain loads throughout healing while maintaining fracture stability. The primary aim of this study is to quantify the degradation rate of a bioresorbable material system, then use this degradation rate to determine the material response of an orthopedic device made of the same material as healing progresses. The present research focuses on the development and characterization of a material system consisting of carbon foam infiltrated with hydroxyapatite (HA) reinforced poly(D,L-lactide)-co-poly(glycolide) (PDLGA). A processing technique is developed to infiltrate carbon foam with HA/PDLGA and material morphology is investigated. Additionally, short-term rat osteoblast cell studies are undertaken to establish a starting point for material biocompatibility. Degradation experiments are conducted to elicit the time-dependent properties of the material system at the material scale. These properties are then incorporated into computational models of an internal plate attached to a fractured human femur to design and predict the material response to applied physiological loads. Results from this work demonstrate the importance of material dissolution rate as well as material strength when designing internal fixation plates.
356

The Use of End Plates for a Cylinder in the Sub-critical Flow Regime

Blackmore, Adam 11 August 2011 (has links)
Experiments were conducted in a free-surface, re-circulating water channel to determine the dependence of spanwise flow uniformity in the near wake of a circular cylinder on the end conditions using Particle Image Velocimetry. The Reynolds number was 10,000. The end conditions consisted of plates with different leading edge geometries and configurations. A cylinder bounded by two endplates with sharp leading edge geometry generated the most uniform near wake. The horseshoe vortex dynamics in the cylinder/ wall and cylinder/endplate junctions were also studied. Upstream flow separation significantly altered the behavior of the horse shoe vortices. Periodic horse shoe vortex oscillation was found for experiments with the upstream flow attached; this periodic oscillation was disrupted with the presence of upstream flow separation. The endplate leading edge distance was also investigated. The oscillation frequency of the horse shoe vortex system was found to decrease with increasing leading edge distance.
357

The Use of End Plates for a Cylinder in the Sub-critical Flow Regime

Blackmore, Adam 11 August 2011 (has links)
Experiments were conducted in a free-surface, re-circulating water channel to determine the dependence of spanwise flow uniformity in the near wake of a circular cylinder on the end conditions using Particle Image Velocimetry. The Reynolds number was 10,000. The end conditions consisted of plates with different leading edge geometries and configurations. A cylinder bounded by two endplates with sharp leading edge geometry generated the most uniform near wake. The horseshoe vortex dynamics in the cylinder/ wall and cylinder/endplate junctions were also studied. Upstream flow separation significantly altered the behavior of the horse shoe vortices. Periodic horse shoe vortex oscillation was found for experiments with the upstream flow attached; this periodic oscillation was disrupted with the presence of upstream flow separation. The endplate leading edge distance was also investigated. The oscillation frequency of the horse shoe vortex system was found to decrease with increasing leading edge distance.
358

Thermoplastic Composites for Polymer Electrolyte Membrane Fuel Cell Bipolar Plates

Mali, Taylor J. January 2006 (has links)
Polymer electrolyte membrane fuel cells (PEMFCs) exhibit encouraging potential as an enabling technology for the Hydrogen Economy. Currently an important barrier to commercialization is the cost associated with existing PEMFC materials; this project’s goal was to investigate alternative materials for PEMFC bipolar plates. Conductive thermoplastic materials offer the promise of low density, low cost processing, and inexpensive resins, and were the focus of material development for PEMFC bipolar plate applications. In order to develop a thermoplastic bipolar plate this study utilized the combination of a low cost injection moldable commodity polymer resin, and low cost carbon materials as conductive fillers. The materials selected and tested included; a polypropylene copolymer; acetylene carbon black; Vulcan carbon black; and short carbon fiber. The components were combined in a twin screw extruder and injection molded into samples for testing. The result was a spectrum of composite samples with a range of filler loadings from 0 to 60 wt% and varying filler type ratios. Synergy between the different carbon types was achieved which led to better physical properties, specifically conductivity. The novel blends produced were tested for electrical conductivity, mechanical properties, rheology, microscopy, and actual plates were made and tested in a single cell PEMFC. These trials enabled discussion around the feasibility of the materials with respect to processability, cost, and performance (both in the fuel cell and in potential applications). The most significant results were measured using a composite blend with 54 wt% filler loading and a 1:1:1 filler ratio. Mechanical results achieved 68% and 100% of the industry targets for tensile and flexural strength, respectively. Tensile strength attained 27.7 MPa and flexural strength measured 82.8 MPa. Electrical conductivity results for the same samples varied between the two methods of measurement used. Using a fuel cell industry recommended procedure 2.2 S/cm was achieved and using a four point ASTM measurement technique 12.0 S/cm was reported. These values represent 3% to 12% of the industry target. Actual 16 cm2 fuel cell plates were produced, fuel cell hardware constructed and assembled, and the power output was found to be 51% relative to graphite plates. Thermoplastic bipolar plates for PEMFCs made of composite materials is promising, but optimum filler loading that balances all properties is still required in order to achieve conductivity targets. Nevertheless this study has demonstrated that conductive thermoplastic bipolar plates can be produced via injection molding.
359

Particle-In-Cell Method To Predict Plasma Behavior Between Two Plates

Tsai, Jie-Cheng 09 August 2011 (has links)
This study uses the PIC (particle-in-cell) method to simulate unsteady three-dimensional behavior in argon plasma under low pressure , low density between two plates. Plasma has been widely used in materials processing, film manufacturing, nuclear fusion , light source , etc. It is therefore important to study Plasma behavior . This model ignores secondary electron emission , recombination between ions and electrons and assumes a uniform distribution of the neutrals having velocity of a Maxwellian distribution. The lower plate in subject to a biased voltage and magnetic field. The result show the effects of a biased voltage in density and velocity of the ion and electron with the low plate.
360

Investigation of a HA/PDLGA/Carbon Foam Material System for Orthopedic Fixation Plates Based on Time-Dependent Properties

Rodriguez, Douglas E. 14 January 2010 (has links)
While there is continuing interest in bioresorbable materials for orthopedic fixation devices, the major challenge in utilizing these materials in load-bearing applications is creating materials sufficiently stiff and strong to sustain loads throughout healing while maintaining fracture stability. The primary aim of this study is to quantify the degradation rate of a bioresorbable material system, then use this degradation rate to determine the material response of an orthopedic device made of the same material as healing progresses. The present research focuses on the development and characterization of a material system consisting of carbon foam infiltrated with hydroxyapatite (HA) reinforced poly(D,L-lactide)-co-poly(glycolide) (PDLGA). A processing technique is developed to infiltrate carbon foam with HA/PDLGA and material morphology is investigated. Additionally, short-term rat osteoblast cell studies are undertaken to establish a starting point for material biocompatibility. Degradation experiments are conducted to elicit the time-dependent properties of the material system at the material scale. These properties are then incorporated into computational models of an internal plate attached to a fractured human femur to design and predict the material response to applied physiological loads. Results from this work demonstrate the importance of material dissolution rate as well as material strength when designing internal fixation plates.

Page generated in 0.0551 seconds